Pritam Talukdar, Bimlesh Kumar, Vihangraj V. Kulkarni
{"title":"水质模型和监测方法在污染源识别、分类和运输模拟方面的研究进展","authors":"Pritam Talukdar, Bimlesh Kumar, Vihangraj V. Kulkarni","doi":"10.1007/s11157-023-09658-z","DOIUrl":null,"url":null,"abstract":"<div><p>Water quality monitoring and modeling are vital in improving the aquatic ecosystem's health and surroundings. The advancements in computer science and its integration with mathematics have resulted in the development of divergent algorithms and models for evaluating/predicting water quality and simulating the fate/transport of environmental contaminants. In this paper, four widely used statistical methods/algorithms, viz. (1) topological method, (2) multivariate statistics, (3) geostatistics, and (4) information entropy method, have been discussed and assessed. The assessment is based on its application merits and de-merits in recent environmental/water resources projects to advocate its suitability and flexibility in water quality analysis. The assessment parameters of suitability taken into account are pollutant source identification and classification. The reviewed methods argue for river water quality improvement through restoration and pollution control plans, simultaneously trying to minimize the number of sampling locations. Further, the five most widely used WQ models, viz. MIKE, AQUATOX, SWAT, IBER, and TELEMAC have been compared based on their mode of access (paid/freely available), input data requirement, output, and applicability for specific scenarios (e.g., oil spillage, contaminant transport, etc.). This paper is the first of its kind that compares and reviews IBER software and other water quality modeling/analysis software. The review is constructed to guide the reader in selecting a particular method and software/model in various scenarios. The study of the water quality models will also help in selecting the most accurate model to uncover the distribution of biochemical contaminants in a water body and its prediction to generate risk maps.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":754,"journal":{"name":"Reviews in Environmental Science and Bio/Technology","volume":"22 3","pages":"653 - 677"},"PeriodicalIF":8.6000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A review of water quality models and monitoring methods for capabilities of pollutant source identification, classification, and transport simulation\",\"authors\":\"Pritam Talukdar, Bimlesh Kumar, Vihangraj V. Kulkarni\",\"doi\":\"10.1007/s11157-023-09658-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water quality monitoring and modeling are vital in improving the aquatic ecosystem's health and surroundings. The advancements in computer science and its integration with mathematics have resulted in the development of divergent algorithms and models for evaluating/predicting water quality and simulating the fate/transport of environmental contaminants. In this paper, four widely used statistical methods/algorithms, viz. (1) topological method, (2) multivariate statistics, (3) geostatistics, and (4) information entropy method, have been discussed and assessed. The assessment is based on its application merits and de-merits in recent environmental/water resources projects to advocate its suitability and flexibility in water quality analysis. The assessment parameters of suitability taken into account are pollutant source identification and classification. The reviewed methods argue for river water quality improvement through restoration and pollution control plans, simultaneously trying to minimize the number of sampling locations. Further, the five most widely used WQ models, viz. MIKE, AQUATOX, SWAT, IBER, and TELEMAC have been compared based on their mode of access (paid/freely available), input data requirement, output, and applicability for specific scenarios (e.g., oil spillage, contaminant transport, etc.). This paper is the first of its kind that compares and reviews IBER software and other water quality modeling/analysis software. The review is constructed to guide the reader in selecting a particular method and software/model in various scenarios. The study of the water quality models will also help in selecting the most accurate model to uncover the distribution of biochemical contaminants in a water body and its prediction to generate risk maps.</p><h3>Graphical Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":754,\"journal\":{\"name\":\"Reviews in Environmental Science and Bio/Technology\",\"volume\":\"22 3\",\"pages\":\"653 - 677\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Environmental Science and Bio/Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11157-023-09658-z\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Environmental Science and Bio/Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11157-023-09658-z","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A review of water quality models and monitoring methods for capabilities of pollutant source identification, classification, and transport simulation
Water quality monitoring and modeling are vital in improving the aquatic ecosystem's health and surroundings. The advancements in computer science and its integration with mathematics have resulted in the development of divergent algorithms and models for evaluating/predicting water quality and simulating the fate/transport of environmental contaminants. In this paper, four widely used statistical methods/algorithms, viz. (1) topological method, (2) multivariate statistics, (3) geostatistics, and (4) information entropy method, have been discussed and assessed. The assessment is based on its application merits and de-merits in recent environmental/water resources projects to advocate its suitability and flexibility in water quality analysis. The assessment parameters of suitability taken into account are pollutant source identification and classification. The reviewed methods argue for river water quality improvement through restoration and pollution control plans, simultaneously trying to minimize the number of sampling locations. Further, the five most widely used WQ models, viz. MIKE, AQUATOX, SWAT, IBER, and TELEMAC have been compared based on their mode of access (paid/freely available), input data requirement, output, and applicability for specific scenarios (e.g., oil spillage, contaminant transport, etc.). This paper is the first of its kind that compares and reviews IBER software and other water quality modeling/analysis software. The review is constructed to guide the reader in selecting a particular method and software/model in various scenarios. The study of the water quality models will also help in selecting the most accurate model to uncover the distribution of biochemical contaminants in a water body and its prediction to generate risk maps.
期刊介绍:
Reviews in Environmental Science and Bio/Technology is a publication that offers easily comprehensible, reliable, and well-rounded perspectives and evaluations in the realm of environmental science and (bio)technology. It disseminates the most recent progressions and timely compilations of groundbreaking scientific discoveries, technological advancements, practical applications, policy developments, and societal concerns encompassing all facets of environmental science and (bio)technology. Furthermore, it tackles broader aspects beyond the natural sciences, incorporating subjects such as education, funding, policy-making, intellectual property, and societal influence.