{"title":"纳米流体润滑滑膜关节的弹性流体动力学挤压-膜相互作用","authors":"M. A. Abdollahzadeh Jamalabadi","doi":"10.21926/rpm.2204021","DOIUrl":null,"url":null,"abstract":"New lubrication events can be predicted using improved pathological non-Newtonian physiological fluids coupled to phospholipid-based bilayers in variable time-dependent magnetic fields under random non-steady conditions. In this study, we investigated nanofluid lubrication systems for synovial joints. The particles of PSPMA-g-HSNPs were used as nanoparticles. The hydrodynamic interaction between the knee bones separated by a nanofluid film was considered here for various nanofluid concentrations. The simulation indicated solid mechanics on the bones being pushed by 45 kg-force. The lubricant layer was squeezed by the approaching bones, which increased the pressure on the lubricant. The calculated maximum lubricant pressure and the change in film height with time were compared to analytical solutions. The results showed that the application of the nanofluid technology on non-conventional lubrication systems for synovial joints was feasible. Finally, we also found that with an increase in the nanoparticle concentration, the maximum pressure on the squeeze film decreased, which introduced a new type of bio-fluid to non-conventional lubrication systems for synovial joints.","PeriodicalId":87352,"journal":{"name":"Recent progress in materials","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastohydrodynamic Squeeze-film Interaction in Synovial Joints with Nanofluid Lubrication\",\"authors\":\"M. A. Abdollahzadeh Jamalabadi\",\"doi\":\"10.21926/rpm.2204021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New lubrication events can be predicted using improved pathological non-Newtonian physiological fluids coupled to phospholipid-based bilayers in variable time-dependent magnetic fields under random non-steady conditions. In this study, we investigated nanofluid lubrication systems for synovial joints. The particles of PSPMA-g-HSNPs were used as nanoparticles. The hydrodynamic interaction between the knee bones separated by a nanofluid film was considered here for various nanofluid concentrations. The simulation indicated solid mechanics on the bones being pushed by 45 kg-force. The lubricant layer was squeezed by the approaching bones, which increased the pressure on the lubricant. The calculated maximum lubricant pressure and the change in film height with time were compared to analytical solutions. The results showed that the application of the nanofluid technology on non-conventional lubrication systems for synovial joints was feasible. Finally, we also found that with an increase in the nanoparticle concentration, the maximum pressure on the squeeze film decreased, which introduced a new type of bio-fluid to non-conventional lubrication systems for synovial joints.\",\"PeriodicalId\":87352,\"journal\":{\"name\":\"Recent progress in materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent progress in materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/rpm.2204021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent progress in materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/rpm.2204021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Elastohydrodynamic Squeeze-film Interaction in Synovial Joints with Nanofluid Lubrication
New lubrication events can be predicted using improved pathological non-Newtonian physiological fluids coupled to phospholipid-based bilayers in variable time-dependent magnetic fields under random non-steady conditions. In this study, we investigated nanofluid lubrication systems for synovial joints. The particles of PSPMA-g-HSNPs were used as nanoparticles. The hydrodynamic interaction between the knee bones separated by a nanofluid film was considered here for various nanofluid concentrations. The simulation indicated solid mechanics on the bones being pushed by 45 kg-force. The lubricant layer was squeezed by the approaching bones, which increased the pressure on the lubricant. The calculated maximum lubricant pressure and the change in film height with time were compared to analytical solutions. The results showed that the application of the nanofluid technology on non-conventional lubrication systems for synovial joints was feasible. Finally, we also found that with an increase in the nanoparticle concentration, the maximum pressure on the squeeze film decreased, which introduced a new type of bio-fluid to non-conventional lubrication systems for synovial joints.