统计思维在生物制药研究中的作用

IF 1.5 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Statistics in Biopharmaceutical Research Pub Date : 2023-06-09 DOI:10.1080/19466315.2023.2224259
F. Bretz, J. Greenhouse
{"title":"统计思维在生物制药研究中的作用","authors":"F. Bretz, J. Greenhouse","doi":"10.1080/19466315.2023.2224259","DOIUrl":null,"url":null,"abstract":"Abstract The development of new drugs has evolved dramatically over the past decade. Advances in technology enable scientists to generate “big data” faster than ever before. The availability of complex, high-volume data in turn creates demand for innovative quantitative solutions and tools in a rapidly evolving landscape. As a result, the role of the statistical scientist in collaborative research has never been more important. Reflecting on these changes, Cox (2012) wrote, “…[A]lthough the tactics of statistical analysis have been utterly changed… the strategy of research design and analysis has been much less affected…” In this article, we argue that the practice of statistics is built on the foundation of good statistical thinking and consists of a complex combination of problem-solving skills, the essence of what Cox meant by the “strategy of research.” Although others have highlighted the role of statistical thinking in research design and analysis, in the age of data science, machine learning and artificial intelligence, it cannot be emphasized enough. We outline four general steps that contribute to good statistical thinking and illustrate them with five use cases (“vignettes”) as well as a detailed case study discussion from a maintenance therapy clinical trial for depression.","PeriodicalId":51280,"journal":{"name":"Statistics in Biopharmaceutical Research","volume":"15 1","pages":"458 - 467"},"PeriodicalIF":1.5000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Statistical Thinking in Biopharmaceutical Research\",\"authors\":\"F. Bretz, J. Greenhouse\",\"doi\":\"10.1080/19466315.2023.2224259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The development of new drugs has evolved dramatically over the past decade. Advances in technology enable scientists to generate “big data” faster than ever before. The availability of complex, high-volume data in turn creates demand for innovative quantitative solutions and tools in a rapidly evolving landscape. As a result, the role of the statistical scientist in collaborative research has never been more important. Reflecting on these changes, Cox (2012) wrote, “…[A]lthough the tactics of statistical analysis have been utterly changed… the strategy of research design and analysis has been much less affected…” In this article, we argue that the practice of statistics is built on the foundation of good statistical thinking and consists of a complex combination of problem-solving skills, the essence of what Cox meant by the “strategy of research.” Although others have highlighted the role of statistical thinking in research design and analysis, in the age of data science, machine learning and artificial intelligence, it cannot be emphasized enough. We outline four general steps that contribute to good statistical thinking and illustrate them with five use cases (“vignettes”) as well as a detailed case study discussion from a maintenance therapy clinical trial for depression.\",\"PeriodicalId\":51280,\"journal\":{\"name\":\"Statistics in Biopharmaceutical Research\",\"volume\":\"15 1\",\"pages\":\"458 - 467\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Biopharmaceutical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19466315.2023.2224259\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Biopharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19466315.2023.2224259","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要在过去的十年里,新药的开发取得了巨大的进展。技术的进步使科学家能够比以往更快地生成“大数据”。复杂、高容量数据的可用性反过来又在快速发展的环境中创造了对创新定量解决方案和工具的需求。因此,统计科学家在合作研究中的作用从未像现在这样重要。Cox(2012)在反思这些变化时写道,“……尽管统计分析的策略已经完全改变……研究设计和分析的策略受到的影响要小得多……”在这篇文章中,我们认为统计学的实践建立在良好的统计思维的基础上,考克斯所说的“研究策略”的本质。尽管其他人强调了统计思维在研究设计和分析中的作用,但在数据科学、机器学习和人工智能时代,这一点再怎么强调也不为过。我们概述了有助于良好统计思维的四个一般步骤,并用五个用例(“小插曲”)以及抑郁症维持治疗临床试验的详细案例研究讨论来说明它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Role of Statistical Thinking in Biopharmaceutical Research
Abstract The development of new drugs has evolved dramatically over the past decade. Advances in technology enable scientists to generate “big data” faster than ever before. The availability of complex, high-volume data in turn creates demand for innovative quantitative solutions and tools in a rapidly evolving landscape. As a result, the role of the statistical scientist in collaborative research has never been more important. Reflecting on these changes, Cox (2012) wrote, “…[A]lthough the tactics of statistical analysis have been utterly changed… the strategy of research design and analysis has been much less affected…” In this article, we argue that the practice of statistics is built on the foundation of good statistical thinking and consists of a complex combination of problem-solving skills, the essence of what Cox meant by the “strategy of research.” Although others have highlighted the role of statistical thinking in research design and analysis, in the age of data science, machine learning and artificial intelligence, it cannot be emphasized enough. We outline four general steps that contribute to good statistical thinking and illustrate them with five use cases (“vignettes”) as well as a detailed case study discussion from a maintenance therapy clinical trial for depression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics in Biopharmaceutical Research
Statistics in Biopharmaceutical Research MATHEMATICAL & COMPUTATIONAL BIOLOGY-STATISTICS & PROBABILITY
CiteScore
3.90
自引率
16.70%
发文量
56
期刊介绍: Statistics in Biopharmaceutical Research ( SBR), publishes articles that focus on the needs of researchers and applied statisticians in biopharmaceutical industries; academic biostatisticians from schools of medicine, veterinary medicine, public health, and pharmacy; statisticians and quantitative analysts working in regulatory agencies (e.g., U.S. Food and Drug Administration and its counterpart in other countries); statisticians with an interest in adopting methodology presented in this journal to their own fields; and nonstatisticians with an interest in applying statistical methods to biopharmaceutical problems. Statistics in Biopharmaceutical Research accepts papers that discuss appropriate statistical methodology and information regarding the use of statistics in all phases of research, development, and practice in the pharmaceutical, biopharmaceutical, device, and diagnostics industries. Articles should focus on the development of novel statistical methods, novel applications of current methods, or the innovative application of statistical principles that can be used by statistical practitioners in these disciplines. Areas of application may include statistical methods for drug discovery, including papers that address issues of multiplicity, sequential trials, adaptive designs, etc.; preclinical and clinical studies; genomics and proteomics; bioassay; biomarkers and surrogate markers; models and analyses of drug history, including pharmacoeconomics, product life cycle, detection of adverse events in clinical studies, and postmarketing risk assessment; regulatory guidelines, including issues of standardization of terminology (e.g., CDISC), tolerance and specification limits related to pharmaceutical practice, and novel methods of drug approval; and detection of adverse events in clinical and toxicological studies. Tutorial articles also are welcome. Articles should include demonstrable evidence of the usefulness of this methodology (presumably by means of an application). The Editorial Board of SBR intends to ensure that the journal continually provides important, useful, and timely information. To accomplish this, the board strives to attract outstanding articles by seeing that each submission receives a careful, thorough, and prompt review. Authors can choose to publish gold open access in this journal.
期刊最新文献
A Basket Trial Design Based on Power Priors Remembering Gregory Campbell (1949-2023): An Accomplished Leader, Mentor, and Biostatistical Innovator Combining Recurrent and Terminal Events Into a Composite Endpoint May Be Problematic Simultaneous Confidence Intervals for Signal Detection and Ascertaining Precision of Adverse Event Rates in Clinical Trials Bayesian shrinkage estimation of credible subgroups for count data with excess zeros
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1