利用平面霍尔电阻传感器分析高分辨率电流探针的热偏移漂移

IF 0.8 Q4 INSTRUMENTS & INSTRUMENTATION Journal of Sensors and Sensor Systems Pub Date : 2023-08-25 DOI:10.5194/jsss-12-225-2023
N. K. Lee, Jaesoo Kim, Daesung Lee
{"title":"利用平面霍尔电阻传感器分析高分辨率电流探针的热偏移漂移","authors":"N. K. Lee, Jaesoo Kim, Daesung Lee","doi":"10.5194/jsss-12-225-2023","DOIUrl":null,"url":null,"abstract":"Abstract. We developed a pin-type current probe with high sensitivity, targeting electrical-probing printed circuit boards (PCBs). The developed sensor showed good enough characteristics, with 1 mA resolution on current measurements and up to 1 MHz operating frequency for analyzing highly integrated PCBs. During its characterization, however, we experienced a monotonously varying output signal in the time range of a few tens of minutes. We modeled it as the thermal-offset drift, being caused by Joule heating during sensor operation, and\nshowed several solutions for reducing the offset by modifying the planar Hall resistance (PHR)\nlayout and electric operation conditions and applying sensor circuitry with\npulse width modulation.\n","PeriodicalId":17167,"journal":{"name":"Journal of Sensors and Sensor Systems","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of thermal-offset drift of a high-resolution current probe using a planar Hall resistance sensor\",\"authors\":\"N. K. Lee, Jaesoo Kim, Daesung Lee\",\"doi\":\"10.5194/jsss-12-225-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We developed a pin-type current probe with high sensitivity, targeting electrical-probing printed circuit boards (PCBs). The developed sensor showed good enough characteristics, with 1 mA resolution on current measurements and up to 1 MHz operating frequency for analyzing highly integrated PCBs. During its characterization, however, we experienced a monotonously varying output signal in the time range of a few tens of minutes. We modeled it as the thermal-offset drift, being caused by Joule heating during sensor operation, and\\nshowed several solutions for reducing the offset by modifying the planar Hall resistance (PHR)\\nlayout and electric operation conditions and applying sensor circuitry with\\npulse width modulation.\\n\",\"PeriodicalId\":17167,\"journal\":{\"name\":\"Journal of Sensors and Sensor Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sensors and Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/jsss-12-225-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensors and Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/jsss-12-225-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们开发了一种高灵敏度的针型电流探头,目标是电探测印刷电路板(pcb)。所开发的传感器显示出足够好的特性,电流测量分辨率为1ma,工作频率高达1mhz,可用于分析高度集成的pcb。然而,在其表征过程中,我们在几十分钟的时间范围内经历了单调变化的输出信号。我们将其建模为由传感器工作过程中的焦耳加热引起的热偏置漂移,并通过改变平面霍尔电阻(PHR)布局和电气工作条件以及应用脉冲宽度调制的传感器电路来减少偏置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of thermal-offset drift of a high-resolution current probe using a planar Hall resistance sensor
Abstract. We developed a pin-type current probe with high sensitivity, targeting electrical-probing printed circuit boards (PCBs). The developed sensor showed good enough characteristics, with 1 mA resolution on current measurements and up to 1 MHz operating frequency for analyzing highly integrated PCBs. During its characterization, however, we experienced a monotonously varying output signal in the time range of a few tens of minutes. We modeled it as the thermal-offset drift, being caused by Joule heating during sensor operation, and showed several solutions for reducing the offset by modifying the planar Hall resistance (PHR) layout and electric operation conditions and applying sensor circuitry with pulse width modulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sensors and Sensor Systems
Journal of Sensors and Sensor Systems INSTRUMENTS & INSTRUMENTATION-
CiteScore
2.30
自引率
10.00%
发文量
26
审稿时长
23 weeks
期刊介绍: Journal of Sensors and Sensor Systems (JSSS) is an international open-access journal dedicated to science, application, and advancement of sensors and sensors as part of measurement systems. The emphasis is on sensor principles and phenomena, measuring systems, sensor technologies, and applications. The goal of JSSS is to provide a platform for scientists and professionals in academia – as well as for developers, engineers, and users – to discuss new developments and advancements in sensors and sensor systems.
期刊最新文献
Human activity recognition system using wearable accelerometers for classification of leg movements: a first, detailed approach Rapid characterisation of mixtures of hydrogen and natural gas by means of ultrasonic time-delay estimation Extraction of nanometer-scale displacements from noisy signals at frequencies down to 1 mHz obtained by differential laser Doppler vibrometry Concatenated Bragg grating fiber-optic sensors for simultaneous measurement of curvature, temperature, and axial pressure Concept, simulation, and fabrication of inverted grating structures for surface plasmon resonance sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1