S. M. Martinaitis, Scott Lincoln, David S. Schlotzhauer, S. Cocks, Jian Zhang
{"title":"一种用于识别仪表潜在故障的时间仪表质量控制算法","authors":"S. M. Martinaitis, Scott Lincoln, David S. Schlotzhauer, S. Cocks, Jian Zhang","doi":"10.1175/jtech-d-22-0038.1","DOIUrl":null,"url":null,"abstract":"\nThere are multiple reasons as to why a precipitation gauge would report erroneous observations. Systematic errors relating to the measuring apparatus or resulting from observational limitations due to environmental factors (e.g., wind-induced undercatch or wetting losses) can be quantified and potentially corrected within a gauge dataset. Other challenges can arise from instrumentation malfunctions, such as clogging, poor siting, and software issues. Instrumentation malfunctions are challenging to quantify as most gauge quality control (QC) schemes focus on the current observation and not on whether the gauge has an inherent issue that would likely require maintenance of the gauge. This study focuses on the development of a temporal QC scheme to identify the likelihood of an instrumentation malfunction through the examination of hourly gauge observations and associated QC designations. The analyzed gauge performance resulted in a temporal QC classification using one of three categories: GOOD, SUSP, and BAD. The temporal QC scheme also accounts for and provides an additional designation when a significant percentage of gauge observations and associated hourly QC were influenced by meteorological factors (e.g., the inability to properly measure winter precipitation). Findings showed a consistent percentage of gauges that were classified as BAD through the running 7-day (2.9%) and 30-day (4.4%) analyses. Verification of select gauges demonstrated how the temporal QC algorithm captured different forms of instrumental-based systematic errors that influenced gauge observations. Results from this study can benefit the identification of degraded performance at gauge sites prior to scheduled routine maintenance.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Temporal Gauge Quality Control Algorithm as a Method for Identifying Potential Instrumentation Malfunctions\",\"authors\":\"S. M. Martinaitis, Scott Lincoln, David S. Schlotzhauer, S. Cocks, Jian Zhang\",\"doi\":\"10.1175/jtech-d-22-0038.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThere are multiple reasons as to why a precipitation gauge would report erroneous observations. Systematic errors relating to the measuring apparatus or resulting from observational limitations due to environmental factors (e.g., wind-induced undercatch or wetting losses) can be quantified and potentially corrected within a gauge dataset. Other challenges can arise from instrumentation malfunctions, such as clogging, poor siting, and software issues. Instrumentation malfunctions are challenging to quantify as most gauge quality control (QC) schemes focus on the current observation and not on whether the gauge has an inherent issue that would likely require maintenance of the gauge. This study focuses on the development of a temporal QC scheme to identify the likelihood of an instrumentation malfunction through the examination of hourly gauge observations and associated QC designations. The analyzed gauge performance resulted in a temporal QC classification using one of three categories: GOOD, SUSP, and BAD. The temporal QC scheme also accounts for and provides an additional designation when a significant percentage of gauge observations and associated hourly QC were influenced by meteorological factors (e.g., the inability to properly measure winter precipitation). Findings showed a consistent percentage of gauges that were classified as BAD through the running 7-day (2.9%) and 30-day (4.4%) analyses. Verification of select gauges demonstrated how the temporal QC algorithm captured different forms of instrumental-based systematic errors that influenced gauge observations. Results from this study can benefit the identification of degraded performance at gauge sites prior to scheduled routine maintenance.\",\"PeriodicalId\":15074,\"journal\":{\"name\":\"Journal of Atmospheric and Oceanic Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Oceanic Technology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jtech-d-22-0038.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jtech-d-22-0038.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
A Temporal Gauge Quality Control Algorithm as a Method for Identifying Potential Instrumentation Malfunctions
There are multiple reasons as to why a precipitation gauge would report erroneous observations. Systematic errors relating to the measuring apparatus or resulting from observational limitations due to environmental factors (e.g., wind-induced undercatch or wetting losses) can be quantified and potentially corrected within a gauge dataset. Other challenges can arise from instrumentation malfunctions, such as clogging, poor siting, and software issues. Instrumentation malfunctions are challenging to quantify as most gauge quality control (QC) schemes focus on the current observation and not on whether the gauge has an inherent issue that would likely require maintenance of the gauge. This study focuses on the development of a temporal QC scheme to identify the likelihood of an instrumentation malfunction through the examination of hourly gauge observations and associated QC designations. The analyzed gauge performance resulted in a temporal QC classification using one of three categories: GOOD, SUSP, and BAD. The temporal QC scheme also accounts for and provides an additional designation when a significant percentage of gauge observations and associated hourly QC were influenced by meteorological factors (e.g., the inability to properly measure winter precipitation). Findings showed a consistent percentage of gauges that were classified as BAD through the running 7-day (2.9%) and 30-day (4.4%) analyses. Verification of select gauges demonstrated how the temporal QC algorithm captured different forms of instrumental-based systematic errors that influenced gauge observations. Results from this study can benefit the identification of degraded performance at gauge sites prior to scheduled routine maintenance.
期刊介绍:
The Journal of Atmospheric and Oceanic Technology (JTECH) publishes research describing instrumentation and methods used in atmospheric and oceanic research, including remote sensing instruments; measurements, validation, and data analysis techniques from satellites, aircraft, balloons, and surface-based platforms; in situ instruments, measurements, and methods for data acquisition, analysis, and interpretation and assimilation in numerical models; and information systems and algorithms.