Nasser Zaky, Mohamed Zaky Ahmed, A. Alarjani, E. Attia
{"title":"钢铁行业精益制造的实施:废弃物管理对生产成本的影响","authors":"Nasser Zaky, Mohamed Zaky Ahmed, A. Alarjani, E. Attia","doi":"10.1108/jedt-01-2023-0012","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis study aims to improve the market competitiveness of iron and steel manufacturers in developing countries by reducing their production costs.\n\n\nDesign/methodology/approach\nThe research methodology relies on a case study-based approach. The study relies on six steps. The first is the preparation, then the five steps of the six-sigma – define, measure, analyze, improve, control. The qualitative and quantitative data were considered. The qualitative analysis relies on the experts’ judgment of internal status. The quantitative analysis uses the job floor data from three iron and steel manufacturers. After collecting, screening and analyzing the data, the root causes of the different wastes were identified that increase production costs. Consequently, lean manufacturing principles and tools are identified and prioritized using the decision-making trial and evaluation laboratory method, and then implemented to reduce the different types of waste.\n\n\nFindings\nThe main wastes are related to inventory, time, quality and workforce. The lean tools were proposed with the implementation plan for the discovered root causes. The performance was monitored during and after the implementation of the lean initiatives in one of the three companies. The obtained results showed an increase in some performance indicators such as throughput (70.6%), revenue from by-products (459%), inventory turnover (54%), operation availability (45%), and plant availability (41%). On the other hand, results showed a decrease of time delay (78%), man-hour/ton (52.4%) and downgraded products (63.3%).\n\n\nPractical implications\nThe current case study findings can be utilized by Iron and Steel factories at the developing countries. In addition, the proposed lean implementation methodology can be adopted for any other industries.\n\n\nSocial implications\nThe current work introduces an original and practical road map to implement the lean six-sigma body of knowledge in the iron and steel manufacturers.\n\n\nOriginality/value\nThis work introduces an effective and practical case study-based approach to implementing the lean six-sigma body of knowledge in the iron and steel manufacturers in one of the underdevelopment countries. The consideration of the opinion of the different engineers from different sectors shows significant identification of the major problems in the manufacturing and utility sectors that lead to significant performance improvement after solving them.\n","PeriodicalId":46533,"journal":{"name":"Journal of Engineering Design and Technology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lean manufacturing implementation in iron and steel industries: effect of wastes management on the production costs\",\"authors\":\"Nasser Zaky, Mohamed Zaky Ahmed, A. Alarjani, E. Attia\",\"doi\":\"10.1108/jedt-01-2023-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis study aims to improve the market competitiveness of iron and steel manufacturers in developing countries by reducing their production costs.\\n\\n\\nDesign/methodology/approach\\nThe research methodology relies on a case study-based approach. The study relies on six steps. The first is the preparation, then the five steps of the six-sigma – define, measure, analyze, improve, control. The qualitative and quantitative data were considered. The qualitative analysis relies on the experts’ judgment of internal status. The quantitative analysis uses the job floor data from three iron and steel manufacturers. After collecting, screening and analyzing the data, the root causes of the different wastes were identified that increase production costs. Consequently, lean manufacturing principles and tools are identified and prioritized using the decision-making trial and evaluation laboratory method, and then implemented to reduce the different types of waste.\\n\\n\\nFindings\\nThe main wastes are related to inventory, time, quality and workforce. The lean tools were proposed with the implementation plan for the discovered root causes. The performance was monitored during and after the implementation of the lean initiatives in one of the three companies. The obtained results showed an increase in some performance indicators such as throughput (70.6%), revenue from by-products (459%), inventory turnover (54%), operation availability (45%), and plant availability (41%). On the other hand, results showed a decrease of time delay (78%), man-hour/ton (52.4%) and downgraded products (63.3%).\\n\\n\\nPractical implications\\nThe current case study findings can be utilized by Iron and Steel factories at the developing countries. In addition, the proposed lean implementation methodology can be adopted for any other industries.\\n\\n\\nSocial implications\\nThe current work introduces an original and practical road map to implement the lean six-sigma body of knowledge in the iron and steel manufacturers.\\n\\n\\nOriginality/value\\nThis work introduces an effective and practical case study-based approach to implementing the lean six-sigma body of knowledge in the iron and steel manufacturers in one of the underdevelopment countries. The consideration of the opinion of the different engineers from different sectors shows significant identification of the major problems in the manufacturing and utility sectors that lead to significant performance improvement after solving them.\\n\",\"PeriodicalId\":46533,\"journal\":{\"name\":\"Journal of Engineering Design and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Design and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jedt-01-2023-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Design and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jedt-01-2023-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Lean manufacturing implementation in iron and steel industries: effect of wastes management on the production costs
Purpose
This study aims to improve the market competitiveness of iron and steel manufacturers in developing countries by reducing their production costs.
Design/methodology/approach
The research methodology relies on a case study-based approach. The study relies on six steps. The first is the preparation, then the five steps of the six-sigma – define, measure, analyze, improve, control. The qualitative and quantitative data were considered. The qualitative analysis relies on the experts’ judgment of internal status. The quantitative analysis uses the job floor data from three iron and steel manufacturers. After collecting, screening and analyzing the data, the root causes of the different wastes were identified that increase production costs. Consequently, lean manufacturing principles and tools are identified and prioritized using the decision-making trial and evaluation laboratory method, and then implemented to reduce the different types of waste.
Findings
The main wastes are related to inventory, time, quality and workforce. The lean tools were proposed with the implementation plan for the discovered root causes. The performance was monitored during and after the implementation of the lean initiatives in one of the three companies. The obtained results showed an increase in some performance indicators such as throughput (70.6%), revenue from by-products (459%), inventory turnover (54%), operation availability (45%), and plant availability (41%). On the other hand, results showed a decrease of time delay (78%), man-hour/ton (52.4%) and downgraded products (63.3%).
Practical implications
The current case study findings can be utilized by Iron and Steel factories at the developing countries. In addition, the proposed lean implementation methodology can be adopted for any other industries.
Social implications
The current work introduces an original and practical road map to implement the lean six-sigma body of knowledge in the iron and steel manufacturers.
Originality/value
This work introduces an effective and practical case study-based approach to implementing the lean six-sigma body of knowledge in the iron and steel manufacturers in one of the underdevelopment countries. The consideration of the opinion of the different engineers from different sectors shows significant identification of the major problems in the manufacturing and utility sectors that lead to significant performance improvement after solving them.
期刊介绍:
- Design strategies - Usability and adaptability - Material, component and systems performance - Process control - Alternative and new technologies - Organizational, management and research issues - Human factors - Environmental, quality and health and safety issues - Cost and life cycle issues - Sustainability criteria, indicators, measurement and practices - Risk management - Entrepreneurship Law, regulation and governance - Design, implementing, managing and practicing innovation - Visualization, simulation, information and communication technologies - Education practices, innovation, strategies and policy issues.