Chang-Sheng Li, Na Zhao, Liang-Chi Zhang, Jian-Jun Ding, Lin Sun, Duan-Zhi Duan, Cheng-Wei Kang, Zhuang-De Jiang
{"title":"一种评估熔融二氧化硅接触滑动裂纹萌生和相互作用的分析方法","authors":"Chang-Sheng Li, Na Zhao, Liang-Chi Zhang, Jian-Jun Ding, Lin Sun, Duan-Zhi Duan, Cheng-Wei Kang, Zhuang-De Jiang","doi":"10.1007/s40436-023-00444-2","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the fracture behavior of fused silica in contact sliding is important to the fabrication of damage-free optics. This study develops an analytical method to characterize the stress field in fused silica under contact sliding by extending the embedded center of dilation (ECD) model and considering the depth of yield region. The effects of densification on the stress fields were considered by scratch volume analysis and finite element analysis. Key mechanisms, such as crack initiation and morphology evolution were comprehensively investigated by analyzing the predicted stress fields and principal stress trajectories. The predictions were validated by Berkovich scratching experiment. It was found that partial conical, median and lateral cracks could emerge in the loading stage of the contact sliding, but radial and lateral cracks could be initiated during unloading. It was also found that the partial conical crack had the lowest initiation load. The intersection of long lateral cracks makes the material removal greater.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"11 3","pages":"363 - 377"},"PeriodicalIF":4.2000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analytical method for assessing the initiation and interaction of cracks in fused silica subjected to contact sliding\",\"authors\":\"Chang-Sheng Li, Na Zhao, Liang-Chi Zhang, Jian-Jun Ding, Lin Sun, Duan-Zhi Duan, Cheng-Wei Kang, Zhuang-De Jiang\",\"doi\":\"10.1007/s40436-023-00444-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding the fracture behavior of fused silica in contact sliding is important to the fabrication of damage-free optics. This study develops an analytical method to characterize the stress field in fused silica under contact sliding by extending the embedded center of dilation (ECD) model and considering the depth of yield region. The effects of densification on the stress fields were considered by scratch volume analysis and finite element analysis. Key mechanisms, such as crack initiation and morphology evolution were comprehensively investigated by analyzing the predicted stress fields and principal stress trajectories. The predictions were validated by Berkovich scratching experiment. It was found that partial conical, median and lateral cracks could emerge in the loading stage of the contact sliding, but radial and lateral cracks could be initiated during unloading. It was also found that the partial conical crack had the lowest initiation load. The intersection of long lateral cracks makes the material removal greater.</p></div>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"11 3\",\"pages\":\"363 - 377\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40436-023-00444-2\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-023-00444-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
An analytical method for assessing the initiation and interaction of cracks in fused silica subjected to contact sliding
Understanding the fracture behavior of fused silica in contact sliding is important to the fabrication of damage-free optics. This study develops an analytical method to characterize the stress field in fused silica under contact sliding by extending the embedded center of dilation (ECD) model and considering the depth of yield region. The effects of densification on the stress fields were considered by scratch volume analysis and finite element analysis. Key mechanisms, such as crack initiation and morphology evolution were comprehensively investigated by analyzing the predicted stress fields and principal stress trajectories. The predictions were validated by Berkovich scratching experiment. It was found that partial conical, median and lateral cracks could emerge in the loading stage of the contact sliding, but radial and lateral cracks could be initiated during unloading. It was also found that the partial conical crack had the lowest initiation load. The intersection of long lateral cracks makes the material removal greater.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.