{"title":"全光自旋电子存储器的研究进展","authors":"Chandrima Banerjee, Anjan Barman","doi":"10.1007/s40010-023-00822-2","DOIUrl":null,"url":null,"abstract":"<div><p>The research in spintronics aims to advance the present memory and computation technology by engaging the spin degree of electron. The use of femtosecond optical pulses is relevant, which has shown to trigger the fastest changes in the magnetic state of matter, leading to the possibility of high speed and energy efficient opto-spintronic memory. In the past decade, the prospects of ultrafast opto-magnetic control in different materials were explored, leading to the discovery of all optical switching of magnetization, which showed promise for applications in technology as well as improved the fundamental understanding of light–spin interaction on ultrashort timescale. In this review, we presented the recent developments, advances and emerging research directions in optical control of magnetization, with an emphasis on the qualitative understanding of the physical processes involved under transient nonequilibrium state. Finally, we outlined the potential of integration of all optical magnetization switching with magnetic random access memory and other memory applications as least-dissipative and fastest method for magnetic writing.</p></div>","PeriodicalId":744,"journal":{"name":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","volume":"93 3","pages":"511 - 516"},"PeriodicalIF":0.8000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in All Optical Spintronic Memory\",\"authors\":\"Chandrima Banerjee, Anjan Barman\",\"doi\":\"10.1007/s40010-023-00822-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The research in spintronics aims to advance the present memory and computation technology by engaging the spin degree of electron. The use of femtosecond optical pulses is relevant, which has shown to trigger the fastest changes in the magnetic state of matter, leading to the possibility of high speed and energy efficient opto-spintronic memory. In the past decade, the prospects of ultrafast opto-magnetic control in different materials were explored, leading to the discovery of all optical switching of magnetization, which showed promise for applications in technology as well as improved the fundamental understanding of light–spin interaction on ultrashort timescale. In this review, we presented the recent developments, advances and emerging research directions in optical control of magnetization, with an emphasis on the qualitative understanding of the physical processes involved under transient nonequilibrium state. Finally, we outlined the potential of integration of all optical magnetization switching with magnetic random access memory and other memory applications as least-dissipative and fastest method for magnetic writing.</p></div>\",\"PeriodicalId\":744,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\",\"volume\":\"93 3\",\"pages\":\"511 - 516\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40010-023-00822-2\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s40010-023-00822-2","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The research in spintronics aims to advance the present memory and computation technology by engaging the spin degree of electron. The use of femtosecond optical pulses is relevant, which has shown to trigger the fastest changes in the magnetic state of matter, leading to the possibility of high speed and energy efficient opto-spintronic memory. In the past decade, the prospects of ultrafast opto-magnetic control in different materials were explored, leading to the discovery of all optical switching of magnetization, which showed promise for applications in technology as well as improved the fundamental understanding of light–spin interaction on ultrashort timescale. In this review, we presented the recent developments, advances and emerging research directions in optical control of magnetization, with an emphasis on the qualitative understanding of the physical processes involved under transient nonequilibrium state. Finally, we outlined the potential of integration of all optical magnetization switching with magnetic random access memory and other memory applications as least-dissipative and fastest method for magnetic writing.