Tielong Deng, Zekai Chen, Yaping Li, Biwen Zhang, Huiqiong Wang, Jia‐Ou Wang, Rui Wu, H. Zhan, Junyong Kang
{"title":"富锌(Mg,Zn)O薄膜在不同表面取向MgO衬底上的外延生长","authors":"Tielong Deng, Zekai Chen, Yaping Li, Biwen Zhang, Huiqiong Wang, Jia‐Ou Wang, Rui Wu, H. Zhan, Junyong Kang","doi":"10.1002/sia.7236","DOIUrl":null,"url":null,"abstract":"(Mg,Zn)O films with various growth orientations were prepared on the MgO substrates with different surface structures using oxygen plasma‐assisted molecular beam epitaxy. X‐ray diffraction (XRD) revealed that the crystallographic orientation of (Mg,Zn)O thin films transforms from the polar c‐plane (0001) to a two‐fold‐symmetry inclined plane and then to the nonpolar m‐plane (10–10) as the substrate template changes from MgO(111) to MgO(011) and then to MgO(001). In addition, the surface topography and film roughness were monitored by atomic force microscopy. Interestingly, the electronic structures of the three films exhibited orientation‐dependent features, as revealed by synchrotron‐based X‐ray absorption spectroscopy. In addition, all of the (Mg,Zn)O thin films showed high optical transmittance (over 85%, 400–800 nm) and large energy gaps (around 3.33 eV). Our systematic study of the substrate‐influenced film characteristics demonstrates a method of tailoring thin films using the same substrate with different crystallographic orientations.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"55 1","pages":"694 - 700"},"PeriodicalIF":1.6000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epitaxial growth of Zn‐rich (Mg,Zn)O thin films on MgO substrates with different surface orientations\",\"authors\":\"Tielong Deng, Zekai Chen, Yaping Li, Biwen Zhang, Huiqiong Wang, Jia‐Ou Wang, Rui Wu, H. Zhan, Junyong Kang\",\"doi\":\"10.1002/sia.7236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"(Mg,Zn)O films with various growth orientations were prepared on the MgO substrates with different surface structures using oxygen plasma‐assisted molecular beam epitaxy. X‐ray diffraction (XRD) revealed that the crystallographic orientation of (Mg,Zn)O thin films transforms from the polar c‐plane (0001) to a two‐fold‐symmetry inclined plane and then to the nonpolar m‐plane (10–10) as the substrate template changes from MgO(111) to MgO(011) and then to MgO(001). In addition, the surface topography and film roughness were monitored by atomic force microscopy. Interestingly, the electronic structures of the three films exhibited orientation‐dependent features, as revealed by synchrotron‐based X‐ray absorption spectroscopy. In addition, all of the (Mg,Zn)O thin films showed high optical transmittance (over 85%, 400–800 nm) and large energy gaps (around 3.33 eV). Our systematic study of the substrate‐influenced film characteristics demonstrates a method of tailoring thin films using the same substrate with different crystallographic orientations.\",\"PeriodicalId\":22062,\"journal\":{\"name\":\"Surface and Interface Analysis\",\"volume\":\"55 1\",\"pages\":\"694 - 700\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface and Interface Analysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/sia.7236\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface and Interface Analysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7236","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Epitaxial growth of Zn‐rich (Mg,Zn)O thin films on MgO substrates with different surface orientations
(Mg,Zn)O films with various growth orientations were prepared on the MgO substrates with different surface structures using oxygen plasma‐assisted molecular beam epitaxy. X‐ray diffraction (XRD) revealed that the crystallographic orientation of (Mg,Zn)O thin films transforms from the polar c‐plane (0001) to a two‐fold‐symmetry inclined plane and then to the nonpolar m‐plane (10–10) as the substrate template changes from MgO(111) to MgO(011) and then to MgO(001). In addition, the surface topography and film roughness were monitored by atomic force microscopy. Interestingly, the electronic structures of the three films exhibited orientation‐dependent features, as revealed by synchrotron‐based X‐ray absorption spectroscopy. In addition, all of the (Mg,Zn)O thin films showed high optical transmittance (over 85%, 400–800 nm) and large energy gaps (around 3.33 eV). Our systematic study of the substrate‐influenced film characteristics demonstrates a method of tailoring thin films using the same substrate with different crystallographic orientations.
期刊介绍:
Surface and Interface Analysis is devoted to the publication of papers dealing with the development and application of techniques for the characterization of surfaces, interfaces and thin films. Papers dealing with standardization and quantification are particularly welcome, and also those which deal with the application of these techniques to industrial problems. Papers dealing with the purely theoretical aspects of the technique will also be considered. Review articles will be published; prior consultation with one of the Editors is advised in these cases. Papers must clearly be of scientific value in the field and will be submitted to two independent referees. Contributions must be in English and must not have been published elsewhere, and authors must agree not to communicate the same material for publication to any other journal. Authors are invited to submit their papers for publication to John Watts (UK only), Jose Sanz (Rest of Europe), John T. Grant (all non-European countries, except Japan) or R. Shimizu (Japan only).