Shengyang Fu, Xiaoyu Du, Min Zhu, Z. Tian, Daixu Wei, Yufang Zhu
{"title":"具有可控双药释放行为的层状介孔生物活性玻璃/海藻酸钠-海藻酸钠支架的3D打印","authors":"Shengyang Fu, Xiaoyu Du, Min Zhu, Z. Tian, Daixu Wei, Yufang Zhu","doi":"10.1088/1748-605X/ab4166","DOIUrl":null,"url":null,"abstract":"Scaffolds with controlled drug release are valuable for bone tissue engineering, but constructing the scaffolds with controllable dual-drug release behaviors is still a challenge. In this study, layered mesoporous bioactive glass/sodium alginate-sodium alginate (MBG/SA–SA) scaffolds with controllable dual-drug release behaviors were fabricated by 3D printing. The porosity and compressive strength of three-dimensional (3D) printed MBG/SA–SA scaffolds by cross-linking are about 78% and 4.2 MPa, respectively. As two model drugs, bovine serum albumin (BSA) and ibuprofen (IBU) were separately loaded in SA layer and MBG/SA layer, resulting in a relatively fast release of BSA and a sustained release of IBU. Furthermore, layered MBG/SA–SA scaffolds were able to stimulate human bone mesenchymal stem cells (hBMSCs) adhesion, proliferation and osteogenic differentiation than SA scaffolds. Hence, the 3D printed MBG/SA–SA scaffolds would be prospective for the treatment of bone defects.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2019-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab4166","citationCount":"24","resultStr":"{\"title\":\"3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors\",\"authors\":\"Shengyang Fu, Xiaoyu Du, Min Zhu, Z. Tian, Daixu Wei, Yufang Zhu\",\"doi\":\"10.1088/1748-605X/ab4166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scaffolds with controlled drug release are valuable for bone tissue engineering, but constructing the scaffolds with controllable dual-drug release behaviors is still a challenge. In this study, layered mesoporous bioactive glass/sodium alginate-sodium alginate (MBG/SA–SA) scaffolds with controllable dual-drug release behaviors were fabricated by 3D printing. The porosity and compressive strength of three-dimensional (3D) printed MBG/SA–SA scaffolds by cross-linking are about 78% and 4.2 MPa, respectively. As two model drugs, bovine serum albumin (BSA) and ibuprofen (IBU) were separately loaded in SA layer and MBG/SA layer, resulting in a relatively fast release of BSA and a sustained release of IBU. Furthermore, layered MBG/SA–SA scaffolds were able to stimulate human bone mesenchymal stem cells (hBMSCs) adhesion, proliferation and osteogenic differentiation than SA scaffolds. Hence, the 3D printed MBG/SA–SA scaffolds would be prospective for the treatment of bone defects.\",\"PeriodicalId\":9016,\"journal\":{\"name\":\"Biomedical materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2019-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1088/1748-605X/ab4166\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ab4166\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ab4166","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors
Scaffolds with controlled drug release are valuable for bone tissue engineering, but constructing the scaffolds with controllable dual-drug release behaviors is still a challenge. In this study, layered mesoporous bioactive glass/sodium alginate-sodium alginate (MBG/SA–SA) scaffolds with controllable dual-drug release behaviors were fabricated by 3D printing. The porosity and compressive strength of three-dimensional (3D) printed MBG/SA–SA scaffolds by cross-linking are about 78% and 4.2 MPa, respectively. As two model drugs, bovine serum albumin (BSA) and ibuprofen (IBU) were separately loaded in SA layer and MBG/SA layer, resulting in a relatively fast release of BSA and a sustained release of IBU. Furthermore, layered MBG/SA–SA scaffolds were able to stimulate human bone mesenchymal stem cells (hBMSCs) adhesion, proliferation and osteogenic differentiation than SA scaffolds. Hence, the 3D printed MBG/SA–SA scaffolds would be prospective for the treatment of bone defects.
期刊介绍:
The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare.
Typical areas of interest include (but are not limited to):
-Synthesis/characterization of biomedical materials-
Nature-inspired synthesis/biomineralization of biomedical materials-
In vitro/in vivo performance of biomedical materials-
Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning-
Microfluidic systems (including disease models): fabrication, testing & translational applications-
Tissue engineering/regenerative medicine-
Interaction of molecules/cells with materials-
Effects of biomaterials on stem cell behaviour-
Growth factors/genes/cells incorporated into biomedical materials-
Biophysical cues/biocompatibility pathways in biomedical materials performance-
Clinical applications of biomedical materials for cell therapies in disease (cancer etc)-
Nanomedicine, nanotoxicology and nanopathology-
Pharmacokinetic considerations in drug delivery systems-
Risks of contrast media in imaging systems-
Biosafety aspects of gene delivery agents-
Preclinical and clinical performance of implantable biomedical materials-
Translational and regulatory matters