Bo Liu, Xing Song, Weiyun Lin, Yan Zhang, Bing Chen, Baiyu Zhang
{"title":"2015年以来光学生物传感器在水中病原体和有机污染物分析中的研究进展","authors":"Bo Liu, Xing Song, Weiyun Lin, Yan Zhang, Bing Chen, Baiyu Zhang","doi":"10.1139/er-2021-0092","DOIUrl":null,"url":null,"abstract":"Water contamination by pathogens and organic pollutants is one of the major environmental problems that risk human health. Climate change with extreme weather can promote their prevalence in waters. Environmental monitoring of these pollutants in a fast, continuous, and accurate manner is of increasing demand, especially under the climate change context, but is challenged by their ubiquity and trace concentrations. Optical biosensing is one of the desired solutions owing to its rapid and accurate detection with high sensitivity. Principally, an optical biosensor recognizes these bioactive toxins and contaminants by tailored bioreceptors (e.g., aptamer, enzyme, and cells) and transduces the biological response to optical signals. Research efforts have been made on tailoring bioreceptors and enhancing signal transducing by nanoparticles. This study comprehensively reviewed the mechanisms of optical biosensing and the recent development of bioreceptors and nanomaterials on the enhancement for the rapid, easy, and accurate analysis of emerging contaminants in water. The advantages and challenges on sensitivity, selectivity, and durability of biosensors were discussed along with the opportunities and development strategies.","PeriodicalId":50514,"journal":{"name":"Environmental Reviews","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Progress of Optical Biosensors for Analysis of Pathogens and Organic Pollutants in Water since 2015\",\"authors\":\"Bo Liu, Xing Song, Weiyun Lin, Yan Zhang, Bing Chen, Baiyu Zhang\",\"doi\":\"10.1139/er-2021-0092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water contamination by pathogens and organic pollutants is one of the major environmental problems that risk human health. Climate change with extreme weather can promote their prevalence in waters. Environmental monitoring of these pollutants in a fast, continuous, and accurate manner is of increasing demand, especially under the climate change context, but is challenged by their ubiquity and trace concentrations. Optical biosensing is one of the desired solutions owing to its rapid and accurate detection with high sensitivity. Principally, an optical biosensor recognizes these bioactive toxins and contaminants by tailored bioreceptors (e.g., aptamer, enzyme, and cells) and transduces the biological response to optical signals. Research efforts have been made on tailoring bioreceptors and enhancing signal transducing by nanoparticles. This study comprehensively reviewed the mechanisms of optical biosensing and the recent development of bioreceptors and nanomaterials on the enhancement for the rapid, easy, and accurate analysis of emerging contaminants in water. The advantages and challenges on sensitivity, selectivity, and durability of biosensors were discussed along with the opportunities and development strategies.\",\"PeriodicalId\":50514,\"journal\":{\"name\":\"Environmental Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2021-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Reviews\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1139/er-2021-0092\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Reviews","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1139/er-2021-0092","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Progress of Optical Biosensors for Analysis of Pathogens and Organic Pollutants in Water since 2015
Water contamination by pathogens and organic pollutants is one of the major environmental problems that risk human health. Climate change with extreme weather can promote their prevalence in waters. Environmental monitoring of these pollutants in a fast, continuous, and accurate manner is of increasing demand, especially under the climate change context, but is challenged by their ubiquity and trace concentrations. Optical biosensing is one of the desired solutions owing to its rapid and accurate detection with high sensitivity. Principally, an optical biosensor recognizes these bioactive toxins and contaminants by tailored bioreceptors (e.g., aptamer, enzyme, and cells) and transduces the biological response to optical signals. Research efforts have been made on tailoring bioreceptors and enhancing signal transducing by nanoparticles. This study comprehensively reviewed the mechanisms of optical biosensing and the recent development of bioreceptors and nanomaterials on the enhancement for the rapid, easy, and accurate analysis of emerging contaminants in water. The advantages and challenges on sensitivity, selectivity, and durability of biosensors were discussed along with the opportunities and development strategies.
期刊介绍:
Published since 1993, Environmental Reviews is a quarterly journal that presents authoritative literature reviews on a wide range of environmental science and associated environmental studies topics, with emphasis on the effects on and response of both natural and manmade ecosystems to anthropogenic stress. The authorship and scope are international, with critical literature reviews submitted and invited on such topics as sustainability, water supply management, climate change, harvesting impacts, acid rain, pesticide use, lake acidification, air and marine pollution, oil and gas development, biological control, food chain biomagnification, rehabilitation of polluted aquatic systems, erosion, forestry, bio-indicators of environmental stress, conservation of biodiversity, and many other environmental issues.