Luis Gustavo Nonato , Pedro Peixoto , Tiago Pereira , Claudia Sagastizábal , Paulo J.S. Silva
{"title":"机器人舞蹈:在复杂网络中干预新冠肺炎的数学优化平台","authors":"Luis Gustavo Nonato , Pedro Peixoto , Tiago Pereira , Claudia Sagastizábal , Paulo J.S. Silva","doi":"10.1016/j.ejco.2022.100025","DOIUrl":null,"url":null,"abstract":"<div><p>Robot Dance is a computational optimization platform developed in response to the COVID-19 outbreak, to support the decision-making on public policies at a regional level. The tool is suitable for understanding and suggesting levels of intervention needed to contain the spread of infectious diseases when the mobility of inhabitants through a regional network is a concern. Such is the case for the SARS-CoV-2 virus that is highly contagious and, therefore, makes it crucial to incorporate the circulation of people in the epidemiological compartmental models. Robot Dance anticipates the spread of an epidemic in a complex regional network, helping to identify fragile links where applying differentiated measures of containment, testing, and vaccination is important. Based on stochastic optimization, the model determines efficient strategies on the basis of commuting of individuals and the situation of hospitals in each district. Uncertainty in the capacity of intensive care beds is handled by a chance-constraint approach. Some functionalities of Robot Dance are illustrated in the state of São Paulo in Brazil, using real data for a region with more than forty million inhabitants.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"10 ","pages":"Article 100025"},"PeriodicalIF":2.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440622000016/pdfft?md5=481392c4a63aa5d41081f96af794659f&pid=1-s2.0-S2192440622000016-main.pdf","citationCount":"1048","resultStr":"{\"title\":\"Robot Dance: A mathematical optimization platform for intervention against COVID-19 in a complex network\",\"authors\":\"Luis Gustavo Nonato , Pedro Peixoto , Tiago Pereira , Claudia Sagastizábal , Paulo J.S. Silva\",\"doi\":\"10.1016/j.ejco.2022.100025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Robot Dance is a computational optimization platform developed in response to the COVID-19 outbreak, to support the decision-making on public policies at a regional level. The tool is suitable for understanding and suggesting levels of intervention needed to contain the spread of infectious diseases when the mobility of inhabitants through a regional network is a concern. Such is the case for the SARS-CoV-2 virus that is highly contagious and, therefore, makes it crucial to incorporate the circulation of people in the epidemiological compartmental models. Robot Dance anticipates the spread of an epidemic in a complex regional network, helping to identify fragile links where applying differentiated measures of containment, testing, and vaccination is important. Based on stochastic optimization, the model determines efficient strategies on the basis of commuting of individuals and the situation of hospitals in each district. Uncertainty in the capacity of intensive care beds is handled by a chance-constraint approach. Some functionalities of Robot Dance are illustrated in the state of São Paulo in Brazil, using real data for a region with more than forty million inhabitants.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"10 \",\"pages\":\"Article 100025\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2192440622000016/pdfft?md5=481392c4a63aa5d41081f96af794659f&pid=1-s2.0-S2192440622000016-main.pdf\",\"citationCount\":\"1048\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192440622000016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440622000016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Robot Dance: A mathematical optimization platform for intervention against COVID-19 in a complex network
Robot Dance is a computational optimization platform developed in response to the COVID-19 outbreak, to support the decision-making on public policies at a regional level. The tool is suitable for understanding and suggesting levels of intervention needed to contain the spread of infectious diseases when the mobility of inhabitants through a regional network is a concern. Such is the case for the SARS-CoV-2 virus that is highly contagious and, therefore, makes it crucial to incorporate the circulation of people in the epidemiological compartmental models. Robot Dance anticipates the spread of an epidemic in a complex regional network, helping to identify fragile links where applying differentiated measures of containment, testing, and vaccination is important. Based on stochastic optimization, the model determines efficient strategies on the basis of commuting of individuals and the situation of hospitals in each district. Uncertainty in the capacity of intensive care beds is handled by a chance-constraint approach. Some functionalities of Robot Dance are illustrated in the state of São Paulo in Brazil, using real data for a region with more than forty million inhabitants.
期刊介绍:
The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.