{"title":"使用随机模拟模型研究挪威分散式免入单元的入住率","authors":"Meetali Kakad, M. Utley, F. A. Dahl","doi":"10.1080/20476965.2023.2174453","DOIUrl":null,"url":null,"abstract":"ABSTRACT Identifying alternatives to acute hospital admission is a priority for many countries. Over 200 decentralised municipal acute units (MAUs) were established in Norway to divert low-acuity patients away from hospitals. MAUs have faced criticism for low mean occupancy and not relieving pressures on hospitals. We developed a discrete time simulation model of admissions and discharges to MAUs to test scenarios for increasing absolute mean occupancy. We also used the model to estimate the number of patients turned away as historical data was unavailable. Our experiments suggest that mergers alone are unlikely to substantially increase MAU absolute mean occupancy as unmet demand is generally low. However, merging MAUs offers scope for up to 20% reduction in bed capacity, without affecting service provision. Our work has relevance for other admissions avoidance units and provides a method for estimating unconstrained demand for beds in the absence of historical data.","PeriodicalId":44699,"journal":{"name":"Health Systems","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using stochastic simulation modelling to study occupancy levels of decentralised admission avoidance units in Norway\",\"authors\":\"Meetali Kakad, M. Utley, F. A. Dahl\",\"doi\":\"10.1080/20476965.2023.2174453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Identifying alternatives to acute hospital admission is a priority for many countries. Over 200 decentralised municipal acute units (MAUs) were established in Norway to divert low-acuity patients away from hospitals. MAUs have faced criticism for low mean occupancy and not relieving pressures on hospitals. We developed a discrete time simulation model of admissions and discharges to MAUs to test scenarios for increasing absolute mean occupancy. We also used the model to estimate the number of patients turned away as historical data was unavailable. Our experiments suggest that mergers alone are unlikely to substantially increase MAU absolute mean occupancy as unmet demand is generally low. However, merging MAUs offers scope for up to 20% reduction in bed capacity, without affecting service provision. Our work has relevance for other admissions avoidance units and provides a method for estimating unconstrained demand for beds in the absence of historical data.\",\"PeriodicalId\":44699,\"journal\":{\"name\":\"Health Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20476965.2023.2174453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"HEALTH POLICY & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20476965.2023.2174453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
Using stochastic simulation modelling to study occupancy levels of decentralised admission avoidance units in Norway
ABSTRACT Identifying alternatives to acute hospital admission is a priority for many countries. Over 200 decentralised municipal acute units (MAUs) were established in Norway to divert low-acuity patients away from hospitals. MAUs have faced criticism for low mean occupancy and not relieving pressures on hospitals. We developed a discrete time simulation model of admissions and discharges to MAUs to test scenarios for increasing absolute mean occupancy. We also used the model to estimate the number of patients turned away as historical data was unavailable. Our experiments suggest that mergers alone are unlikely to substantially increase MAU absolute mean occupancy as unmet demand is generally low. However, merging MAUs offers scope for up to 20% reduction in bed capacity, without affecting service provision. Our work has relevance for other admissions avoidance units and provides a method for estimating unconstrained demand for beds in the absence of historical data.