{"title":"盘管缠绕换热器缠绕管固有频率的研究","authors":"Yue Wang, Peng Ren, Guofeng Huang, W. Tan","doi":"10.1115/1.4054621","DOIUrl":null,"url":null,"abstract":"\n Wound tube, which is an important component of Coil-wound heat exchanger (CWHE), is subjected to cross-flow impacting and thereby vibrating. Owing to investigate Flow-induced vibration (FIV) of wound tubes, it is essential to study the vibration characteristics of the tubes. In this paper, the natural vibration characteristics of wound tube, which was divided into curved tube and coil tube based on support conditions, were studied in detail. And experiments, numerical simulations and calculation methods were carried out. First, the structures of the two tubes were described parametrically. Afterwards, vibration experiments proved the reliability of numerical simulations of the tubes. Furthermore, calculation methods for the fundamental frequencies of the two tubes were proposed, the accuracies of which were further proven by comparison with simulation results. In addition, the first three mode shapes of the curved tube and coil tube were bending vibration modes. Then the influence of structural parameters on the fundamental frequency was discussed and the independence of parameters was demonstrated. The effects of the variables of the layer pitch ratio, a, the same layer pitch ratio, b, and helix angle, a, on the added mass coefficient, Cm, were ultimately investigated. In general, this paper provides a technical basis to evaluate the design and machining for design and supervision staff.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation in the Natural Frequency of Wound Tube for Coil-Wound Heat Exchanger\",\"authors\":\"Yue Wang, Peng Ren, Guofeng Huang, W. Tan\",\"doi\":\"10.1115/1.4054621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Wound tube, which is an important component of Coil-wound heat exchanger (CWHE), is subjected to cross-flow impacting and thereby vibrating. Owing to investigate Flow-induced vibration (FIV) of wound tubes, it is essential to study the vibration characteristics of the tubes. In this paper, the natural vibration characteristics of wound tube, which was divided into curved tube and coil tube based on support conditions, were studied in detail. And experiments, numerical simulations and calculation methods were carried out. First, the structures of the two tubes were described parametrically. Afterwards, vibration experiments proved the reliability of numerical simulations of the tubes. Furthermore, calculation methods for the fundamental frequencies of the two tubes were proposed, the accuracies of which were further proven by comparison with simulation results. In addition, the first three mode shapes of the curved tube and coil tube were bending vibration modes. Then the influence of structural parameters on the fundamental frequency was discussed and the independence of parameters was demonstrated. The effects of the variables of the layer pitch ratio, a, the same layer pitch ratio, b, and helix angle, a, on the added mass coefficient, Cm, were ultimately investigated. In general, this paper provides a technical basis to evaluate the design and machining for design and supervision staff.\",\"PeriodicalId\":50080,\"journal\":{\"name\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4054621\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4054621","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Investigation in the Natural Frequency of Wound Tube for Coil-Wound Heat Exchanger
Wound tube, which is an important component of Coil-wound heat exchanger (CWHE), is subjected to cross-flow impacting and thereby vibrating. Owing to investigate Flow-induced vibration (FIV) of wound tubes, it is essential to study the vibration characteristics of the tubes. In this paper, the natural vibration characteristics of wound tube, which was divided into curved tube and coil tube based on support conditions, were studied in detail. And experiments, numerical simulations and calculation methods were carried out. First, the structures of the two tubes were described parametrically. Afterwards, vibration experiments proved the reliability of numerical simulations of the tubes. Furthermore, calculation methods for the fundamental frequencies of the two tubes were proposed, the accuracies of which were further proven by comparison with simulation results. In addition, the first three mode shapes of the curved tube and coil tube were bending vibration modes. Then the influence of structural parameters on the fundamental frequency was discussed and the independence of parameters was demonstrated. The effects of the variables of the layer pitch ratio, a, the same layer pitch ratio, b, and helix angle, a, on the added mass coefficient, Cm, were ultimately investigated. In general, this paper provides a technical basis to evaluate the design and machining for design and supervision staff.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.