Valéria Cristina Silva, D. Blitzkow, F. G. V. Almeida, A. Matos, G. Guimarães
{"title":"巴西圣保罗地电位数的计算与分析","authors":"Valéria Cristina Silva, D. Blitzkow, F. G. V. Almeida, A. Matos, G. Guimarães","doi":"10.15446/esrj.v26n2.100645","DOIUrl":null,"url":null,"abstract":"\n\n\n\nIn recent decades, important steps have been taken to implement the physical concepts of Geodesy in practice, con- cerning height systems. Despite the difficulties involving gravity field modeling, with the establishment of conventions, standards, and computation strategies, the realization of the International Height Reference System (IHRS) is well underway. For a global system, there are constraints for some countries, especially for those with sparse gravity data, mountain regions, and vast areas. In terms of methodology, the computation can be performed directly using the Global Geopotential Models (GGM), recovering existing geoid models, or determining pointwise the gravity potential using integral formulas. In general, the regional gravity modeling is given by numerical integration or least-squares collocation and more recently adopting the spherical radial basis functions. The first approach allows determining the earth’s gravity component at a specific point and adjusting the integral formula according to the gravity coverage. Since so far there is no common sense about the best methodology, computation strategies are been analyzed. In this con- text, the paper aims to contribute to IHRF, computing the geopotential number in the scope of IHRF, using numerical integration to solve the Geodetic Boundary Value Problem and an existing recent quasi-geoid model in four stations in São Paulo state, Brazil. The first approach was performed considering two cases: a radius of 210 km and 110 km of gravimetric data coverage and the Global Geopotential Model GOCO05S truncated at 100 and 200, respectively. The results between solutions have shown a maximum difference of 94 cm, and a minimum difference of 10 cm.\n\n\n\n","PeriodicalId":11456,"journal":{"name":"Earth Sciences Research Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation and Analysis of Geopotential Number in São Paulo, Brazil\",\"authors\":\"Valéria Cristina Silva, D. Blitzkow, F. G. V. Almeida, A. Matos, G. Guimarães\",\"doi\":\"10.15446/esrj.v26n2.100645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\n\\nIn recent decades, important steps have been taken to implement the physical concepts of Geodesy in practice, con- cerning height systems. Despite the difficulties involving gravity field modeling, with the establishment of conventions, standards, and computation strategies, the realization of the International Height Reference System (IHRS) is well underway. For a global system, there are constraints for some countries, especially for those with sparse gravity data, mountain regions, and vast areas. In terms of methodology, the computation can be performed directly using the Global Geopotential Models (GGM), recovering existing geoid models, or determining pointwise the gravity potential using integral formulas. In general, the regional gravity modeling is given by numerical integration or least-squares collocation and more recently adopting the spherical radial basis functions. The first approach allows determining the earth’s gravity component at a specific point and adjusting the integral formula according to the gravity coverage. Since so far there is no common sense about the best methodology, computation strategies are been analyzed. In this con- text, the paper aims to contribute to IHRF, computing the geopotential number in the scope of IHRF, using numerical integration to solve the Geodetic Boundary Value Problem and an existing recent quasi-geoid model in four stations in São Paulo state, Brazil. The first approach was performed considering two cases: a radius of 210 km and 110 km of gravimetric data coverage and the Global Geopotential Model GOCO05S truncated at 100 and 200, respectively. The results between solutions have shown a maximum difference of 94 cm, and a minimum difference of 10 cm.\\n\\n\\n\\n\",\"PeriodicalId\":11456,\"journal\":{\"name\":\"Earth Sciences Research Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Sciences Research Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.15446/esrj.v26n2.100645\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Sciences Research Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.15446/esrj.v26n2.100645","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Computation and Analysis of Geopotential Number in São Paulo, Brazil
In recent decades, important steps have been taken to implement the physical concepts of Geodesy in practice, con- cerning height systems. Despite the difficulties involving gravity field modeling, with the establishment of conventions, standards, and computation strategies, the realization of the International Height Reference System (IHRS) is well underway. For a global system, there are constraints for some countries, especially for those with sparse gravity data, mountain regions, and vast areas. In terms of methodology, the computation can be performed directly using the Global Geopotential Models (GGM), recovering existing geoid models, or determining pointwise the gravity potential using integral formulas. In general, the regional gravity modeling is given by numerical integration or least-squares collocation and more recently adopting the spherical radial basis functions. The first approach allows determining the earth’s gravity component at a specific point and adjusting the integral formula according to the gravity coverage. Since so far there is no common sense about the best methodology, computation strategies are been analyzed. In this con- text, the paper aims to contribute to IHRF, computing the geopotential number in the scope of IHRF, using numerical integration to solve the Geodetic Boundary Value Problem and an existing recent quasi-geoid model in four stations in São Paulo state, Brazil. The first approach was performed considering two cases: a radius of 210 km and 110 km of gravimetric data coverage and the Global Geopotential Model GOCO05S truncated at 100 and 200, respectively. The results between solutions have shown a maximum difference of 94 cm, and a minimum difference of 10 cm.
期刊介绍:
ESRJ publishes the results from technical and scientific research on various disciplines of Earth Sciences and its interactions with several engineering applications.
Works will only be considered if not previously published anywhere else. Manuscripts must contain information derived from scientific research projects or technical developments. The ideas expressed by publishing in ESRJ are the sole responsibility of the authors.
We gladly consider manuscripts in the following subject areas:
-Geophysics: Seismology, Seismic Prospecting, Gravimetric, Magnetic and Electrical methods.
-Geology: Volcanology, Tectonics, Neotectonics, Geomorphology, Geochemistry, Geothermal Energy, ---Glaciology, Ore Geology, Environmental Geology, Geological Hazards.
-Geodesy: Geodynamics, GPS measurements applied to geological and geophysical problems.
-Basic Sciences and Computer Science applied to Geology and Geophysics.
-Meteorology and Atmospheric Sciences.
-Oceanography.
-Planetary Sciences.
-Engineering: Earthquake Engineering and Seismology Engineering, Geological Engineering, Geotechnics.