利用受体聚集和核磁共振光谱对结合配体进行简单灵敏的检测:麦芽糖结合蛋白的一个测试案例

IF 1.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biomolecular NMR Pub Date : 2021-09-15 DOI:10.1007/s10858-021-00381-x
Young Kee Chae, Yoonjin Um, Hakbeom Kim
{"title":"利用受体聚集和核磁共振光谱对结合配体进行简单灵敏的检测:麦芽糖结合蛋白的一个测试案例","authors":"Young Kee Chae,&nbsp;Yoonjin Um,&nbsp;Hakbeom Kim","doi":"10.1007/s10858-021-00381-x","DOIUrl":null,"url":null,"abstract":"<div><p>Protein-ligand interaction is one of the highlights of molecular recognition. The most popular application of this type of interaction is drug development which requires a high throughput screening of a ligand that binds to the target protein. Our goal was to find a binding ligand with a simple detection, and once this type of ligand was found, other methods could then be used to measure the detailed kinetic or thermodynamic parameters. We started with the idea that the ligand NMR signal would disappear if it was bound to the non-tumbling mass. In order to create the non-tumbling mass, we tried the aggregates of a target protein, which was fused to the elastin-like polypeptide. We chose the maltose binding proteinas a test case, and we tried it with several sugars, which included maltose, glucose, sucrose, lactose, galactose, maltotriose, and β-cyclodextrin. The maltose signal in the H-1 NMR spectrum disappeared completely as hoped around the protein to ligand ratio of 1:3 at 298 K where the proteins aggregated. The protein signals also disappeared upon aggregation except for the fast-moving part, which resulted in a cleaner background than the monomeric form. Since we only needed to look for a disappearing signal amongst those from the mixture, it should be useful in high throughput screening. Other types of sugars except for the maltotriose and β-cyclodextrin, which are siblings of the maltose, did not seem to bind at all. We believe that our system would be especially more effective when dealing with a smaller target protein, so both the protein and the bound ligand would lose their signals only when the aggregates formed. We hope that our proposed method would contribute to accelerating the development of the potent drug candidates by simultaneously identifying several binders directly from a mixture.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10858-021-00381-x.pdf","citationCount":"1","resultStr":"{\"title\":\"A simple and sensitive detection of the binding ligands by using the receptor aggregation and NMR spectroscopy: a test case of the maltose binding protein\",\"authors\":\"Young Kee Chae,&nbsp;Yoonjin Um,&nbsp;Hakbeom Kim\",\"doi\":\"10.1007/s10858-021-00381-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Protein-ligand interaction is one of the highlights of molecular recognition. The most popular application of this type of interaction is drug development which requires a high throughput screening of a ligand that binds to the target protein. Our goal was to find a binding ligand with a simple detection, and once this type of ligand was found, other methods could then be used to measure the detailed kinetic or thermodynamic parameters. We started with the idea that the ligand NMR signal would disappear if it was bound to the non-tumbling mass. In order to create the non-tumbling mass, we tried the aggregates of a target protein, which was fused to the elastin-like polypeptide. We chose the maltose binding proteinas a test case, and we tried it with several sugars, which included maltose, glucose, sucrose, lactose, galactose, maltotriose, and β-cyclodextrin. The maltose signal in the H-1 NMR spectrum disappeared completely as hoped around the protein to ligand ratio of 1:3 at 298 K where the proteins aggregated. The protein signals also disappeared upon aggregation except for the fast-moving part, which resulted in a cleaner background than the monomeric form. Since we only needed to look for a disappearing signal amongst those from the mixture, it should be useful in high throughput screening. Other types of sugars except for the maltotriose and β-cyclodextrin, which are siblings of the maltose, did not seem to bind at all. We believe that our system would be especially more effective when dealing with a smaller target protein, so both the protein and the bound ligand would lose their signals only when the aggregates formed. We hope that our proposed method would contribute to accelerating the development of the potent drug candidates by simultaneously identifying several binders directly from a mixture.</p></div>\",\"PeriodicalId\":613,\"journal\":{\"name\":\"Journal of Biomolecular NMR\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10858-021-00381-x.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular NMR\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10858-021-00381-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-021-00381-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

蛋白质-配体相互作用是分子识别的热点之一。这种类型的相互作用最流行的应用是药物开发,它需要高通量筛选与靶蛋白结合的配体。我们的目标是通过简单的检测找到一种结合配体,一旦找到这种类型的配体,就可以使用其他方法来测量详细的动力学或热力学参数。我们一开始的想法是,如果配体的核磁共振信号与非翻滚的质量结合,它就会消失。为了创造不翻滚的质量,我们尝试了目标蛋白的聚集体,它被融合到弹性蛋白样多肽中。我们选择麦芽糖结合蛋白作为测试案例,并尝试了几种糖,包括麦芽糖、葡萄糖、蔗糖、乳糖、半乳糖、麦芽糖和β-环糊精。在298k时,当蛋白与配体的比例为1:3时,H-1 NMR谱中的麦芽糖信号完全消失。除了快速移动的部分外,蛋白质信号在聚集时也消失了,这导致比单体形式更干净的背景。由于我们只需要在混合物中寻找消失的信号,因此它应该在高通量筛选中有用。除了麦芽糖和β-环糊精(麦芽糖的兄弟姐妹)外,其他类型的糖似乎根本没有结合。我们相信我们的系统在处理较小的靶蛋白时尤其有效,因此蛋白质和结合的配体只有在聚集形成时才会失去信号。我们希望我们提出的方法能够通过同时直接从混合物中识别几种结合剂来加速有效候选药物的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simple and sensitive detection of the binding ligands by using the receptor aggregation and NMR spectroscopy: a test case of the maltose binding protein

Protein-ligand interaction is one of the highlights of molecular recognition. The most popular application of this type of interaction is drug development which requires a high throughput screening of a ligand that binds to the target protein. Our goal was to find a binding ligand with a simple detection, and once this type of ligand was found, other methods could then be used to measure the detailed kinetic or thermodynamic parameters. We started with the idea that the ligand NMR signal would disappear if it was bound to the non-tumbling mass. In order to create the non-tumbling mass, we tried the aggregates of a target protein, which was fused to the elastin-like polypeptide. We chose the maltose binding proteinas a test case, and we tried it with several sugars, which included maltose, glucose, sucrose, lactose, galactose, maltotriose, and β-cyclodextrin. The maltose signal in the H-1 NMR spectrum disappeared completely as hoped around the protein to ligand ratio of 1:3 at 298 K where the proteins aggregated. The protein signals also disappeared upon aggregation except for the fast-moving part, which resulted in a cleaner background than the monomeric form. Since we only needed to look for a disappearing signal amongst those from the mixture, it should be useful in high throughput screening. Other types of sugars except for the maltotriose and β-cyclodextrin, which are siblings of the maltose, did not seem to bind at all. We believe that our system would be especially more effective when dealing with a smaller target protein, so both the protein and the bound ligand would lose their signals only when the aggregates formed. We hope that our proposed method would contribute to accelerating the development of the potent drug candidates by simultaneously identifying several binders directly from a mixture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular NMR
Journal of Biomolecular NMR 生物-光谱学
CiteScore
6.00
自引率
3.70%
发文量
19
审稿时长
6-12 weeks
期刊介绍: The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include: Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR. New NMR techniques for studies of biological macromolecules. Novel approaches to computer-aided automated analysis of multidimensional NMR spectra. Computational methods for the structural interpretation of NMR data, including structure refinement. Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals. New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.
期刊最新文献
Pitfalls in measurements of R1 relaxation rates of protein backbone 15N nuclei. Towards cost-effective side-chain isotope labelling of proteins expressed in human cells. Optimising in-cell NMR acquisition for nucleic acids. Transverse relaxation optimized spectroscopy of NH2 groups in glutamine and asparagine side chains of proteins. Micromolar fluoride contamination arising from glass NMR tubes and a simple solution for biomolecular applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1