{"title":"富Al-Zn, Mg和富Al-Mg底漆设计增强敏化Al-Mg合金阴极防护的机理","authors":"M. McMahon, Alen Korjenic, J. Scully, J. Burns","doi":"10.5006/4289","DOIUrl":null,"url":null,"abstract":"Three Al-Zn, Mg, and Mg-Al rich primers (RP) were evaluated for their ability to suppress intergranular corrosion (IGC) and intergranular stress corrosion cracking (IG-SCC) on highly sensitized aluminum alloy 5456-H116 by sacrificial anode based cathodic prevention and chemical deposition effects. Tests were conducted in 0.6 M NaCl solution under full immersion. These evaluations considered the ability of the primer to attain an intermediate open circuit potential such that the galvanic couple potential with bare 5456 resided outside a range of potentials where IGC prevention is observed. The ability of the primer to achieve open circuit potentials negative enough so that the 5456-H116 could be protected by sacrificial anode-based cathodic prevention and the ability to sustain this function over time were evaluated. The primers consisted of epoxy resins embedded with either (1) spherical Al-5 wt.% Zn, (2) spherical Al-5 wt.% Zn and spherical Mg, or (3) Mg flake pigments. A variety of electrochemical techniques evaluated the performance specified including open circuit potential, electrochemical impedance spectroscopy, diagnostic cycle testing, as well as zero resistance ammeter tests with simultaneous pH measurement. Electrochemical cycle testing demonstrated that Al-5%Zn did not activate or provide cathodic prevention. MgRP had a suitable open circuit potential for cathodic protection of 5456 but the time to primer activation as well as the activated potential both decreased upon utilization of Mg flake content in the primer. The pure Mg-rich primer activated quickly but ceased to achieve protective potentials after 1-11 cycles of DC/AC/OCP cycle testing. Cross-sectional analysis demonstrated that some flakes dissolved while uniform surface oxidation occurred on the remaining Mg flakes. which in combination led to impaired activation. The composite Mg plus Al-Zn rich primer mixed primer maintained a suitably negative open circuit potential over time, remained activated, dispensed high anodic charge, and remained an anode in zero resistance ammeter testing. Chemical stability modeling and zero resistance ammeter testing suggests that Mg corrosion elevates the pH which activates the Al-5wt.% Zn pigments, thereby providing a secondary pathway for sacrificial anode-based cathodic protection which supports the long-lasting cathodic protection achieved by the Al-5 wt.% Zn/Mg primer. These analyses set a baseline for the consideration of Al-Zn/Mg-based coatings to establish effective cathodic protection on highly sensitized 5456-H116 in an aggressive alternate immersion environment and illustrate the merit of using Al-MgRP.","PeriodicalId":10717,"journal":{"name":"Corrosion","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic Insight into Al-Zn, Mg, and Al-Mg Rich Primer Design for Enhanced Cathodic Prevention on Sensitized Al-Mg Alloys\",\"authors\":\"M. McMahon, Alen Korjenic, J. Scully, J. Burns\",\"doi\":\"10.5006/4289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three Al-Zn, Mg, and Mg-Al rich primers (RP) were evaluated for their ability to suppress intergranular corrosion (IGC) and intergranular stress corrosion cracking (IG-SCC) on highly sensitized aluminum alloy 5456-H116 by sacrificial anode based cathodic prevention and chemical deposition effects. Tests were conducted in 0.6 M NaCl solution under full immersion. These evaluations considered the ability of the primer to attain an intermediate open circuit potential such that the galvanic couple potential with bare 5456 resided outside a range of potentials where IGC prevention is observed. The ability of the primer to achieve open circuit potentials negative enough so that the 5456-H116 could be protected by sacrificial anode-based cathodic prevention and the ability to sustain this function over time were evaluated. The primers consisted of epoxy resins embedded with either (1) spherical Al-5 wt.% Zn, (2) spherical Al-5 wt.% Zn and spherical Mg, or (3) Mg flake pigments. A variety of electrochemical techniques evaluated the performance specified including open circuit potential, electrochemical impedance spectroscopy, diagnostic cycle testing, as well as zero resistance ammeter tests with simultaneous pH measurement. Electrochemical cycle testing demonstrated that Al-5%Zn did not activate or provide cathodic prevention. MgRP had a suitable open circuit potential for cathodic protection of 5456 but the time to primer activation as well as the activated potential both decreased upon utilization of Mg flake content in the primer. The pure Mg-rich primer activated quickly but ceased to achieve protective potentials after 1-11 cycles of DC/AC/OCP cycle testing. Cross-sectional analysis demonstrated that some flakes dissolved while uniform surface oxidation occurred on the remaining Mg flakes. which in combination led to impaired activation. The composite Mg plus Al-Zn rich primer mixed primer maintained a suitably negative open circuit potential over time, remained activated, dispensed high anodic charge, and remained an anode in zero resistance ammeter testing. Chemical stability modeling and zero resistance ammeter testing suggests that Mg corrosion elevates the pH which activates the Al-5wt.% Zn pigments, thereby providing a secondary pathway for sacrificial anode-based cathodic protection which supports the long-lasting cathodic protection achieved by the Al-5 wt.% Zn/Mg primer. These analyses set a baseline for the consideration of Al-Zn/Mg-based coatings to establish effective cathodic protection on highly sensitized 5456-H116 in an aggressive alternate immersion environment and illustrate the merit of using Al-MgRP.\",\"PeriodicalId\":10717,\"journal\":{\"name\":\"Corrosion\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.5006/4289\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5006/4289","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanistic Insight into Al-Zn, Mg, and Al-Mg Rich Primer Design for Enhanced Cathodic Prevention on Sensitized Al-Mg Alloys
Three Al-Zn, Mg, and Mg-Al rich primers (RP) were evaluated for their ability to suppress intergranular corrosion (IGC) and intergranular stress corrosion cracking (IG-SCC) on highly sensitized aluminum alloy 5456-H116 by sacrificial anode based cathodic prevention and chemical deposition effects. Tests were conducted in 0.6 M NaCl solution under full immersion. These evaluations considered the ability of the primer to attain an intermediate open circuit potential such that the galvanic couple potential with bare 5456 resided outside a range of potentials where IGC prevention is observed. The ability of the primer to achieve open circuit potentials negative enough so that the 5456-H116 could be protected by sacrificial anode-based cathodic prevention and the ability to sustain this function over time were evaluated. The primers consisted of epoxy resins embedded with either (1) spherical Al-5 wt.% Zn, (2) spherical Al-5 wt.% Zn and spherical Mg, or (3) Mg flake pigments. A variety of electrochemical techniques evaluated the performance specified including open circuit potential, electrochemical impedance spectroscopy, diagnostic cycle testing, as well as zero resistance ammeter tests with simultaneous pH measurement. Electrochemical cycle testing demonstrated that Al-5%Zn did not activate or provide cathodic prevention. MgRP had a suitable open circuit potential for cathodic protection of 5456 but the time to primer activation as well as the activated potential both decreased upon utilization of Mg flake content in the primer. The pure Mg-rich primer activated quickly but ceased to achieve protective potentials after 1-11 cycles of DC/AC/OCP cycle testing. Cross-sectional analysis demonstrated that some flakes dissolved while uniform surface oxidation occurred on the remaining Mg flakes. which in combination led to impaired activation. The composite Mg plus Al-Zn rich primer mixed primer maintained a suitably negative open circuit potential over time, remained activated, dispensed high anodic charge, and remained an anode in zero resistance ammeter testing. Chemical stability modeling and zero resistance ammeter testing suggests that Mg corrosion elevates the pH which activates the Al-5wt.% Zn pigments, thereby providing a secondary pathway for sacrificial anode-based cathodic protection which supports the long-lasting cathodic protection achieved by the Al-5 wt.% Zn/Mg primer. These analyses set a baseline for the consideration of Al-Zn/Mg-based coatings to establish effective cathodic protection on highly sensitized 5456-H116 in an aggressive alternate immersion environment and illustrate the merit of using Al-MgRP.
期刊介绍:
CORROSION is the premier research journal featuring peer-reviewed technical articles from the world’s top researchers and provides a permanent record of progress in the science and technology of corrosion prevention and control. The scope of the journal includes the latest developments in areas of corrosion metallurgy, mechanisms, predictors, cracking (sulfide stress, stress corrosion, hydrogen-induced), passivation, and CO2 corrosion.
70+ years and over 7,100 peer-reviewed articles with advances in corrosion science and engineering have been published in CORROSION. The journal publishes seven article types – original articles, invited critical reviews, technical notes, corrosion communications fast-tracked for rapid publication, special research topic issues, research letters of yearly annual conference student poster sessions, and scientific investigations of field corrosion processes. CORROSION, the Journal of Science and Engineering, serves as an important communication platform for academics, researchers, technical libraries, and universities.
Articles considered for CORROSION should have significant permanent value and should accomplish at least one of the following objectives:
• Contribute awareness of corrosion phenomena,
• Advance understanding of fundamental process, and/or
• Further the knowledge of techniques and practices used to reduce corrosion.