COVID-19疫情预测:以新西兰为例

IF 0.8 Q3 ECONOMICS New Zealand Economic Papers Pub Date : 2020-11-06 DOI:10.1080/00779954.2020.1842795
P. Ho, T. Lubik, C. Matthes
{"title":"COVID-19疫情预测:以新西兰为例","authors":"P. Ho, T. Lubik, C. Matthes","doi":"10.1080/00779954.2020.1842795","DOIUrl":null,"url":null,"abstract":"ABSTRACT We estimate a statistical model for COVID-19 cases and deaths in New Zealand. New Zealand is an important test case for statistical and theoretical research into the dynamics of the global pandemic since it went through a full cycle of infections. We choose functional forms for infections and deaths that incorporate important features of epidemiological models but allow for flexible parameterization to capture different trajectories of the pandemic. Our Bayesian estimation reveals that the simple statistical framework we employ fits the data well and allows for a transparent characterization of the uncertainty surrounding the trajectories of infections and deaths.","PeriodicalId":38921,"journal":{"name":"New Zealand Economic Papers","volume":"56 1","pages":"9 - 16"},"PeriodicalIF":0.8000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00779954.2020.1842795","citationCount":"1","resultStr":"{\"title\":\"Forecasting the COVID-19 epidemic: the case of New Zealand\",\"authors\":\"P. Ho, T. Lubik, C. Matthes\",\"doi\":\"10.1080/00779954.2020.1842795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We estimate a statistical model for COVID-19 cases and deaths in New Zealand. New Zealand is an important test case for statistical and theoretical research into the dynamics of the global pandemic since it went through a full cycle of infections. We choose functional forms for infections and deaths that incorporate important features of epidemiological models but allow for flexible parameterization to capture different trajectories of the pandemic. Our Bayesian estimation reveals that the simple statistical framework we employ fits the data well and allows for a transparent characterization of the uncertainty surrounding the trajectories of infections and deaths.\",\"PeriodicalId\":38921,\"journal\":{\"name\":\"New Zealand Economic Papers\",\"volume\":\"56 1\",\"pages\":\"9 - 16\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00779954.2020.1842795\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Zealand Economic Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00779954.2020.1842795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Economic Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00779954.2020.1842795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要:我们估计了新西兰新冠肺炎病例和死亡的统计模型。新西兰是对全球疫情动态进行统计和理论研究的重要试验案例,因为它经历了一个完整的感染周期。我们为感染和死亡选择了包含流行病学模型重要特征的功能形式,但允许灵活的参数化来捕捉大流行的不同轨迹。我们的贝叶斯估计表明,我们使用的简单统计框架非常适合数据,并允许对感染和死亡轨迹的不确定性进行透明的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting the COVID-19 epidemic: the case of New Zealand
ABSTRACT We estimate a statistical model for COVID-19 cases and deaths in New Zealand. New Zealand is an important test case for statistical and theoretical research into the dynamics of the global pandemic since it went through a full cycle of infections. We choose functional forms for infections and deaths that incorporate important features of epidemiological models but allow for flexible parameterization to capture different trajectories of the pandemic. Our Bayesian estimation reveals that the simple statistical framework we employ fits the data well and allows for a transparent characterization of the uncertainty surrounding the trajectories of infections and deaths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Zealand Economic Papers
New Zealand Economic Papers Economics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
1.20
自引率
0.00%
发文量
17
期刊最新文献
Community-level ethnic diversity and community-level socio-economic development: evidence from 20 African countries The wage cost of a lack of access to affordable childcare in Aotearoa New Zealand Distinguished fellow lecture: monetary policy and the benefits and limits of central bank independence Differences between NZ and U.S. individual investor sentiment: more noise or more information? Citation for Bob Buckle to mark his Distinguished Fellow Award
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1