{"title":"增强型灰狼优化算法在无线传感器网络中的到达时间差估计","authors":"D. E, S. A.","doi":"10.1108/ijpcc-05-2022-0181","DOIUrl":null,"url":null,"abstract":"Purpose\nIntelligent prediction of node localization in wireless sensor networks (WSNs) is a major concern for researchers. The huge amount of data generated by modern sensor array systems required computationally efficient calibration techniques. This paper aims to improve localization accuracy by identifying obstacles in the optimization process and network scenarios.\n\n\nDesign/methodology/approach\nThe proposed method is used to incorporate distance estimation between nodes and packet transmission hop counts. This estimation is used in the proposed support vector machine (SVM) to find the network path using a time difference of arrival (TDoA)-based SVM. However, if the data set is noisy, SVM is prone to poor optimization, which leads to overlapping of target classes and the pathways through TDoA. The enhanced gray wolf optimization (EGWO) technique is introduced to eliminate overlapping target classes in the SVM.\n\n\nFindings\nThe performance and efficacy of the model using existing TDoA methodologies are analyzed. The simulation results show that the proposed TDoA-EGWO achieves a higher rate of detection efficiency of 98% and control overhead of 97.8% and a better packet delivery ratio than other traditional methods.\n\n\nOriginality/value\nThe proposed method is successful in detecting the unknown position of the sensor node with a detection rate greater than that of other methods.","PeriodicalId":43952,"journal":{"name":"International Journal of Pervasive Computing and Communications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced gray wolf optimization for estimation of time difference of arrival in WSNs\",\"authors\":\"D. E, S. A.\",\"doi\":\"10.1108/ijpcc-05-2022-0181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose\\nIntelligent prediction of node localization in wireless sensor networks (WSNs) is a major concern for researchers. The huge amount of data generated by modern sensor array systems required computationally efficient calibration techniques. This paper aims to improve localization accuracy by identifying obstacles in the optimization process and network scenarios.\\n\\n\\nDesign/methodology/approach\\nThe proposed method is used to incorporate distance estimation between nodes and packet transmission hop counts. This estimation is used in the proposed support vector machine (SVM) to find the network path using a time difference of arrival (TDoA)-based SVM. However, if the data set is noisy, SVM is prone to poor optimization, which leads to overlapping of target classes and the pathways through TDoA. The enhanced gray wolf optimization (EGWO) technique is introduced to eliminate overlapping target classes in the SVM.\\n\\n\\nFindings\\nThe performance and efficacy of the model using existing TDoA methodologies are analyzed. The simulation results show that the proposed TDoA-EGWO achieves a higher rate of detection efficiency of 98% and control overhead of 97.8% and a better packet delivery ratio than other traditional methods.\\n\\n\\nOriginality/value\\nThe proposed method is successful in detecting the unknown position of the sensor node with a detection rate greater than that of other methods.\",\"PeriodicalId\":43952,\"journal\":{\"name\":\"International Journal of Pervasive Computing and Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pervasive Computing and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijpcc-05-2022-0181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pervasive Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijpcc-05-2022-0181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Enhanced gray wolf optimization for estimation of time difference of arrival in WSNs
Purpose
Intelligent prediction of node localization in wireless sensor networks (WSNs) is a major concern for researchers. The huge amount of data generated by modern sensor array systems required computationally efficient calibration techniques. This paper aims to improve localization accuracy by identifying obstacles in the optimization process and network scenarios.
Design/methodology/approach
The proposed method is used to incorporate distance estimation between nodes and packet transmission hop counts. This estimation is used in the proposed support vector machine (SVM) to find the network path using a time difference of arrival (TDoA)-based SVM. However, if the data set is noisy, SVM is prone to poor optimization, which leads to overlapping of target classes and the pathways through TDoA. The enhanced gray wolf optimization (EGWO) technique is introduced to eliminate overlapping target classes in the SVM.
Findings
The performance and efficacy of the model using existing TDoA methodologies are analyzed. The simulation results show that the proposed TDoA-EGWO achieves a higher rate of detection efficiency of 98% and control overhead of 97.8% and a better packet delivery ratio than other traditional methods.
Originality/value
The proposed method is successful in detecting the unknown position of the sensor node with a detection rate greater than that of other methods.