光学元件的热化键合结构设计

IF 1.8 4区 物理与天体物理 Q3 OPTICS International Journal of Optics Pub Date : 2022-03-20 DOI:10.1155/2022/1744180
Xiaofeng Liu, Xin Zhang, Xindong Chen
{"title":"光学元件的热化键合结构设计","authors":"Xiaofeng Liu, Xin Zhang, Xindong Chen","doi":"10.1155/2022/1744180","DOIUrl":null,"url":null,"abstract":"In this paper, an athermalizing connection method of the optical components of high-performance optical objectives that enables them to reduce the deterioration of their performance due to temperature instability is proposed. The optical components of the athermalizing connection structure consist of three parts arranged from the outside to the inside. The materials of the intermediate parts are different from those of the external and internal ones. The relationship between the parameters of the athermalizing connection structure is deduced based on the mechanics of materials. The surface errors of optical components at different temperatures are simulated for an exemplary structure. The simulation results show that the root mean square (RMS) of the optical component surface is approximately proportional to the temperature. When the temperature drops by 10 °C, the RMS changes by 0.66 nm as compared to its value measured at 20 °C. The temperature deflection test of the optical components carried out in the temperature range of 20 ± 5 °C provides the RMS values of the optical face of 0.019λ at 15 °C and 0.02λ at 25 °C. The change of RMS obtained in this test amounts to 0.63 nm for a temperature difference of 10 °C, which deviates from the respective simulated value by 4%. The experimental results show that the athermalizing connection method proposed in this paper ensures small deformations of optical components at large temperature changes. Therefore, it meets the requirements for the application of optical components and is suitable for the connection of high-precision components.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of an Athermalizing Bonding Structure for Optical Components\",\"authors\":\"Xiaofeng Liu, Xin Zhang, Xindong Chen\",\"doi\":\"10.1155/2022/1744180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an athermalizing connection method of the optical components of high-performance optical objectives that enables them to reduce the deterioration of their performance due to temperature instability is proposed. The optical components of the athermalizing connection structure consist of three parts arranged from the outside to the inside. The materials of the intermediate parts are different from those of the external and internal ones. The relationship between the parameters of the athermalizing connection structure is deduced based on the mechanics of materials. The surface errors of optical components at different temperatures are simulated for an exemplary structure. The simulation results show that the root mean square (RMS) of the optical component surface is approximately proportional to the temperature. When the temperature drops by 10 °C, the RMS changes by 0.66 nm as compared to its value measured at 20 °C. The temperature deflection test of the optical components carried out in the temperature range of 20 ± 5 °C provides the RMS values of the optical face of 0.019λ at 15 °C and 0.02λ at 25 °C. The change of RMS obtained in this test amounts to 0.63 nm for a temperature difference of 10 °C, which deviates from the respective simulated value by 4%. The experimental results show that the athermalizing connection method proposed in this paper ensures small deformations of optical components at large temperature changes. Therefore, it meets the requirements for the application of optical components and is suitable for the connection of high-precision components.\",\"PeriodicalId\":55995,\"journal\":{\"name\":\"International Journal of Optics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/1744180\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/1744180","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种高性能光学物镜光学元件的热化连接方法,使其能够减少由于温度不稳定而导致的性能下降。散热连接结构的光学元件由由外向内排列的三部分组成。中间部件的材料不同于外部部件和内部部件。从材料力学的角度出发,推导了保温连接结构各参数之间的关系。模拟了一种示例性结构在不同温度下光学元件的表面误差。仿真结果表明,光学元件表面的均方根(RMS)与温度近似成正比。当温度下降10℃时,RMS与20℃时相比变化了0.66 nm。在20±5℃的温度范围内对光学元件进行温度偏转测试,15℃时光学表面的RMS值为0.019λ, 25℃时为0.02λ。在10°C的温差下,本试验得到的RMS变化为0.63 nm,与各自的模拟值相差4%。实验结果表明,本文提出的热化连接方法可以保证光学元件在大温度变化下的小变形。因此满足光学元件的应用要求,适用于高精度元件的连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of an Athermalizing Bonding Structure for Optical Components
In this paper, an athermalizing connection method of the optical components of high-performance optical objectives that enables them to reduce the deterioration of their performance due to temperature instability is proposed. The optical components of the athermalizing connection structure consist of three parts arranged from the outside to the inside. The materials of the intermediate parts are different from those of the external and internal ones. The relationship between the parameters of the athermalizing connection structure is deduced based on the mechanics of materials. The surface errors of optical components at different temperatures are simulated for an exemplary structure. The simulation results show that the root mean square (RMS) of the optical component surface is approximately proportional to the temperature. When the temperature drops by 10 °C, the RMS changes by 0.66 nm as compared to its value measured at 20 °C. The temperature deflection test of the optical components carried out in the temperature range of 20 ± 5 °C provides the RMS values of the optical face of 0.019λ at 15 °C and 0.02λ at 25 °C. The change of RMS obtained in this test amounts to 0.63 nm for a temperature difference of 10 °C, which deviates from the respective simulated value by 4%. The experimental results show that the athermalizing connection method proposed in this paper ensures small deformations of optical components at large temperature changes. Therefore, it meets the requirements for the application of optical components and is suitable for the connection of high-precision components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Optics
International Journal of Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
3.40
自引率
5.90%
发文量
28
审稿时长
13 weeks
期刊介绍: International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
Dual Optical Injection in Semiconductor Lasers with Zero Henry Factor Study on the Terahertz Spectroscopy Properties of Graphene Quantum Dots Based on Microfluidic Chip Advancements in Synthesis Strategies and Optoelectronic Applications of Bio-Based Photosensitive Polyimides Temperature-Dependent Electromagnetic Surface Wave Supported by Graphene-Loaded Indium Antimonide Planar Structure The Propagation Properties of a Lorentz–Gauss Vortex Beam in a Gradient-Index Medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1