Fabio Valoppi , Johannes Schavikin , Petri Lassila , Ivo Laidmäe , Jyrki Heinämäki , Sami Hietala , Edward Haeggström , Ari Salmi
{"title":"超声增强电纺纳米纤维直接分散和冷磨制备油凝胶的形成与表征","authors":"Fabio Valoppi , Johannes Schavikin , Petri Lassila , Ivo Laidmäe , Jyrki Heinämäki , Sami Hietala , Edward Haeggström , Ari Salmi","doi":"10.1016/j.foostr.2023.100338","DOIUrl":null,"url":null,"abstract":"<div><p>Oleogels are semi-solid lipid-based materials designed to replace solid and semi-solid fats in foods, cosmetics, and pharmaceuticals. A new method for oleogel preparation through nanofibers has opened new possibilities for polymers from synthetic and natural origins previously considered inadequate for oleogel preparation. However, the obtained oleogels were made from conventionally electrospun nanofibers, where the production process still has limitations or the oleogel preparation process required different steps, such as use of organic solvents and extensive drying steps. In this work, we present a new organic solvent-free method for preparing oleogels using nanofiber mats of polyethylene oxide obtained with an ultrasound-enhanced electrospinning (USES) device. After dispersing nanofibers in oil followed by a cold-milling process, we obtained oleogels at a concentration >10% nanofiber concentration in rapeseed, walnut, and flaxseed oils. All oleogels were composed of a jammed dispersion of nanofiber mat fragments that conferred the system a gel-like behavior with good thixotropic recovery. In general, oleogel rheological properties were affected by oil type and nanofiber concentration, even if all systems showed uniform plastic deformation at increasing strain amplitude. Our results show that the milling method here developed can be a useful approach for obtaining oleogels using nanofibers obtained with USES, without the need of high temperatures or fiber pretreatments.</p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"37 ","pages":"Article 100338"},"PeriodicalIF":5.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation and characterization of oleogels obtained via direct dispersion of ultrasound-enhanced electrospun nanofibers and cold milling\",\"authors\":\"Fabio Valoppi , Johannes Schavikin , Petri Lassila , Ivo Laidmäe , Jyrki Heinämäki , Sami Hietala , Edward Haeggström , Ari Salmi\",\"doi\":\"10.1016/j.foostr.2023.100338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Oleogels are semi-solid lipid-based materials designed to replace solid and semi-solid fats in foods, cosmetics, and pharmaceuticals. A new method for oleogel preparation through nanofibers has opened new possibilities for polymers from synthetic and natural origins previously considered inadequate for oleogel preparation. However, the obtained oleogels were made from conventionally electrospun nanofibers, where the production process still has limitations or the oleogel preparation process required different steps, such as use of organic solvents and extensive drying steps. In this work, we present a new organic solvent-free method for preparing oleogels using nanofiber mats of polyethylene oxide obtained with an ultrasound-enhanced electrospinning (USES) device. After dispersing nanofibers in oil followed by a cold-milling process, we obtained oleogels at a concentration >10% nanofiber concentration in rapeseed, walnut, and flaxseed oils. All oleogels were composed of a jammed dispersion of nanofiber mat fragments that conferred the system a gel-like behavior with good thixotropic recovery. In general, oleogel rheological properties were affected by oil type and nanofiber concentration, even if all systems showed uniform plastic deformation at increasing strain amplitude. Our results show that the milling method here developed can be a useful approach for obtaining oleogels using nanofibers obtained with USES, without the need of high temperatures or fiber pretreatments.</p></div>\",\"PeriodicalId\":48640,\"journal\":{\"name\":\"Food Structure-Netherlands\",\"volume\":\"37 \",\"pages\":\"Article 100338\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Structure-Netherlands\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221332912300031X\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221332912300031X","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Formation and characterization of oleogels obtained via direct dispersion of ultrasound-enhanced electrospun nanofibers and cold milling
Oleogels are semi-solid lipid-based materials designed to replace solid and semi-solid fats in foods, cosmetics, and pharmaceuticals. A new method for oleogel preparation through nanofibers has opened new possibilities for polymers from synthetic and natural origins previously considered inadequate for oleogel preparation. However, the obtained oleogels were made from conventionally electrospun nanofibers, where the production process still has limitations or the oleogel preparation process required different steps, such as use of organic solvents and extensive drying steps. In this work, we present a new organic solvent-free method for preparing oleogels using nanofiber mats of polyethylene oxide obtained with an ultrasound-enhanced electrospinning (USES) device. After dispersing nanofibers in oil followed by a cold-milling process, we obtained oleogels at a concentration >10% nanofiber concentration in rapeseed, walnut, and flaxseed oils. All oleogels were composed of a jammed dispersion of nanofiber mat fragments that conferred the system a gel-like behavior with good thixotropic recovery. In general, oleogel rheological properties were affected by oil type and nanofiber concentration, even if all systems showed uniform plastic deformation at increasing strain amplitude. Our results show that the milling method here developed can be a useful approach for obtaining oleogels using nanofibers obtained with USES, without the need of high temperatures or fiber pretreatments.
期刊介绍:
Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.