I. Irastorza, J. Luzuriaga, R. Martínez‐Conde, G. Ibarretxe, F. Unda
{"title":"人牙髓干细胞与血浆衍生产物在仿生种植体表面的粘附、整合和成骨。","authors":"I. Irastorza, J. Luzuriaga, R. Martínez‐Conde, G. Ibarretxe, F. Unda","doi":"10.22203/eCM.v038a14","DOIUrl":null,"url":null,"abstract":"Dental implants are the usual therapy of choice in the dental clinic to replace a loss of natural teeth. Over recent decades there has been an important progress in the design and manufacturing of titanium implant surfaces with the goal of improving their osteointegration. In the present work, the aim was to evaluate the usefulness of hDPSCs (human dental pulp stem cells), in combination with autologous plasma components, for in vitro bone generation on biomimetic titanium dental implant materials. In this context, the combination of hDPSCs stimulated by PRGF or PRF and cultured on standard Ti6A14V and biomimetic BAS™ (Avinent Implant System) titanium surfaces were studied in order to evaluate possible enhancements in the osteoblastic differentiation process out of human mesenchymal cells, as well as bone matrix secretion on the implant surface. The results obtained in this in vitro model of osteogenesis suggested a combination of biomimetic rough titanium surfaces, such as BAS™, with autologous plasma-derived fibrin-clot membranes such as PRF and/or insoluble PRGF formulations, but not with an addition of water-soluble supplements of plasma-derived growth factors, to maximise osteoblastic cell differentiation, bone generation, anchorage and osteointegration of titanium-made dental implants.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"38 1","pages":"201-214"},"PeriodicalIF":3.2000,"publicationDate":"2019-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.22203/eCM.v038a14","citationCount":"15","resultStr":"{\"title\":\"Adhesion, integration and osteogenesis of human dental pulp stem cells on biomimetic implant surfaces combined with plasma derived products.\",\"authors\":\"I. Irastorza, J. Luzuriaga, R. Martínez‐Conde, G. Ibarretxe, F. Unda\",\"doi\":\"10.22203/eCM.v038a14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dental implants are the usual therapy of choice in the dental clinic to replace a loss of natural teeth. Over recent decades there has been an important progress in the design and manufacturing of titanium implant surfaces with the goal of improving their osteointegration. In the present work, the aim was to evaluate the usefulness of hDPSCs (human dental pulp stem cells), in combination with autologous plasma components, for in vitro bone generation on biomimetic titanium dental implant materials. In this context, the combination of hDPSCs stimulated by PRGF or PRF and cultured on standard Ti6A14V and biomimetic BAS™ (Avinent Implant System) titanium surfaces were studied in order to evaluate possible enhancements in the osteoblastic differentiation process out of human mesenchymal cells, as well as bone matrix secretion on the implant surface. The results obtained in this in vitro model of osteogenesis suggested a combination of biomimetic rough titanium surfaces, such as BAS™, with autologous plasma-derived fibrin-clot membranes such as PRF and/or insoluble PRGF formulations, but not with an addition of water-soluble supplements of plasma-derived growth factors, to maximise osteoblastic cell differentiation, bone generation, anchorage and osteointegration of titanium-made dental implants.\",\"PeriodicalId\":11849,\"journal\":{\"name\":\"European cells & materials\",\"volume\":\"38 1\",\"pages\":\"201-214\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2019-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.22203/eCM.v038a14\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European cells & materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.22203/eCM.v038a14\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European cells & materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22203/eCM.v038a14","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Adhesion, integration and osteogenesis of human dental pulp stem cells on biomimetic implant surfaces combined with plasma derived products.
Dental implants are the usual therapy of choice in the dental clinic to replace a loss of natural teeth. Over recent decades there has been an important progress in the design and manufacturing of titanium implant surfaces with the goal of improving their osteointegration. In the present work, the aim was to evaluate the usefulness of hDPSCs (human dental pulp stem cells), in combination with autologous plasma components, for in vitro bone generation on biomimetic titanium dental implant materials. In this context, the combination of hDPSCs stimulated by PRGF or PRF and cultured on standard Ti6A14V and biomimetic BAS™ (Avinent Implant System) titanium surfaces were studied in order to evaluate possible enhancements in the osteoblastic differentiation process out of human mesenchymal cells, as well as bone matrix secretion on the implant surface. The results obtained in this in vitro model of osteogenesis suggested a combination of biomimetic rough titanium surfaces, such as BAS™, with autologous plasma-derived fibrin-clot membranes such as PRF and/or insoluble PRGF formulations, but not with an addition of water-soluble supplements of plasma-derived growth factors, to maximise osteoblastic cell differentiation, bone generation, anchorage and osteointegration of titanium-made dental implants.
期刊介绍:
eCM provides an interdisciplinary forum for publication of preclinical research in the musculoskeletal field (Trauma, Maxillofacial (including dental), Spine and Orthopaedics).
The clinical relevance of the work must be briefly mentioned within the abstract, and in more detail in the paper. Poor abstracts which do not concisely cover the paper contents will not be sent for review. Incremental steps in research will not be entertained by eCM journal.Cross-disciplinary papers that go across our scope areas are welcomed.