S. Mortezaei, H. Arabi, H. Seyedein, A. Momeny, M. Soltanalinezhad
{"title":"半奥氏体不锈钢热变形组织演变的研究","authors":"S. Mortezaei, H. Arabi, H. Seyedein, A. Momeny, M. Soltanalinezhad","doi":"10.22068/IJMSE.17.3.60","DOIUrl":null,"url":null,"abstract":": Dynamic Recrystallization (DRX) is one of the likely mechanisms for fine-graining in metals and alloys. The dynamic recrystallization (DRX) phenomena occur in different thermo-mechanical processing (TMP) conditions for various metallic materials. DRX depends on various materials and thermo-mechanical parameters such as temperature, strain rate, strain, stress, and initial microstructure. in the present study, the restoration mechanism of the 17-7PH stainless steel has been investigated using a hot compression test under different conditions of thermo-mechanical treatment. The microstructural characteristics and the behavior of the hot deformation of the understudy steel are investigated using flow curves and microstructure images obtained from optical microscopy. The results show that the maximum and steady-state stresses are significantly affected by the strain rate and the deformation temperature. So, the flow stress increases with a decrease in the deformation temperature and an increase in the strain rate. Microstructural studies confirm the occurrence of DRX as a restoration mechanism in the microstructure for the two phases of austenite and ferrite.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Investigation on Microstructure Evolution of a Semi-Austenitic Stainless Steel Through Hot Deformation\",\"authors\":\"S. Mortezaei, H. Arabi, H. Seyedein, A. Momeny, M. Soltanalinezhad\",\"doi\":\"10.22068/IJMSE.17.3.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Dynamic Recrystallization (DRX) is one of the likely mechanisms for fine-graining in metals and alloys. The dynamic recrystallization (DRX) phenomena occur in different thermo-mechanical processing (TMP) conditions for various metallic materials. DRX depends on various materials and thermo-mechanical parameters such as temperature, strain rate, strain, stress, and initial microstructure. in the present study, the restoration mechanism of the 17-7PH stainless steel has been investigated using a hot compression test under different conditions of thermo-mechanical treatment. The microstructural characteristics and the behavior of the hot deformation of the understudy steel are investigated using flow curves and microstructure images obtained from optical microscopy. The results show that the maximum and steady-state stresses are significantly affected by the strain rate and the deformation temperature. So, the flow stress increases with a decrease in the deformation temperature and an increase in the strain rate. Microstructural studies confirm the occurrence of DRX as a restoration mechanism in the microstructure for the two phases of austenite and ferrite.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22068/IJMSE.17.3.60\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22068/IJMSE.17.3.60","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation on Microstructure Evolution of a Semi-Austenitic Stainless Steel Through Hot Deformation
: Dynamic Recrystallization (DRX) is one of the likely mechanisms for fine-graining in metals and alloys. The dynamic recrystallization (DRX) phenomena occur in different thermo-mechanical processing (TMP) conditions for various metallic materials. DRX depends on various materials and thermo-mechanical parameters such as temperature, strain rate, strain, stress, and initial microstructure. in the present study, the restoration mechanism of the 17-7PH stainless steel has been investigated using a hot compression test under different conditions of thermo-mechanical treatment. The microstructural characteristics and the behavior of the hot deformation of the understudy steel are investigated using flow curves and microstructure images obtained from optical microscopy. The results show that the maximum and steady-state stresses are significantly affected by the strain rate and the deformation temperature. So, the flow stress increases with a decrease in the deformation temperature and an increase in the strain rate. Microstructural studies confirm the occurrence of DRX as a restoration mechanism in the microstructure for the two phases of austenite and ferrite.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.