{"title":"特征向量集中度作为信息聚合中结构偏差的度量","authors":"E. Bienenstock, P. Bonacich","doi":"10.1080/0022250X.2021.1878357","DOIUrl":null,"url":null,"abstract":"Abstract The principal eigenvector of the adjacency matrix is widely used to complement degree, betweenness and closeness measures of network centrality. Employing eigenvector centrality as an individual level metric underutilizes this measure. Here we demonstrate how eigenvector centralization, used as a network-level metric, models the potential, or limitation, for the diffusion of novel information within a network. We relate eigenvector centralization to assortativity and core – periphery and use simple simulations to demonstrate how eigenvector centralization is ideal for revealing the conditions under which network structure produces suboptimal utilization of available information. Our findings provide a structural explanation for the persistence of “out of touch” business and political leadership even when organizations implement protocols and interventions to improve leadership accessibility.","PeriodicalId":50139,"journal":{"name":"Journal of Mathematical Sociology","volume":"46 1","pages":"227 - 245"},"PeriodicalIF":1.3000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0022250X.2021.1878357","citationCount":"9","resultStr":"{\"title\":\"Eigenvector centralization as a measure of structural bias in information aggregation\",\"authors\":\"E. Bienenstock, P. Bonacich\",\"doi\":\"10.1080/0022250X.2021.1878357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The principal eigenvector of the adjacency matrix is widely used to complement degree, betweenness and closeness measures of network centrality. Employing eigenvector centrality as an individual level metric underutilizes this measure. Here we demonstrate how eigenvector centralization, used as a network-level metric, models the potential, or limitation, for the diffusion of novel information within a network. We relate eigenvector centralization to assortativity and core – periphery and use simple simulations to demonstrate how eigenvector centralization is ideal for revealing the conditions under which network structure produces suboptimal utilization of available information. Our findings provide a structural explanation for the persistence of “out of touch” business and political leadership even when organizations implement protocols and interventions to improve leadership accessibility.\",\"PeriodicalId\":50139,\"journal\":{\"name\":\"Journal of Mathematical Sociology\",\"volume\":\"46 1\",\"pages\":\"227 - 245\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/0022250X.2021.1878357\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Sociology\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1080/0022250X.2021.1878357\",\"RegionNum\":4,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Sociology","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/0022250X.2021.1878357","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Eigenvector centralization as a measure of structural bias in information aggregation
Abstract The principal eigenvector of the adjacency matrix is widely used to complement degree, betweenness and closeness measures of network centrality. Employing eigenvector centrality as an individual level metric underutilizes this measure. Here we demonstrate how eigenvector centralization, used as a network-level metric, models the potential, or limitation, for the diffusion of novel information within a network. We relate eigenvector centralization to assortativity and core – periphery and use simple simulations to demonstrate how eigenvector centralization is ideal for revealing the conditions under which network structure produces suboptimal utilization of available information. Our findings provide a structural explanation for the persistence of “out of touch” business and political leadership even when organizations implement protocols and interventions to improve leadership accessibility.
期刊介绍:
The goal of the Journal of Mathematical Sociology is to publish models and mathematical techniques that would likely be useful to professional sociologists. The Journal also welcomes papers of mutual interest to social scientists and other social and behavioral scientists, as well as papers by non-social scientists that may encourage fruitful connections between sociology and other disciplines. Reviews of new or developing areas of mathematics and mathematical modeling that may have significant applications in sociology will also be considered.
The Journal of Mathematical Sociology is published in association with the International Network for Social Network Analysis, the Japanese Association for Mathematical Sociology, the Mathematical Sociology Section of the American Sociological Association, and the Methodology Section of the American Sociological Association.