Tithli Sadhu, Somanth Chowdhury, Shubham Mondal, Jagannath Roy, J. Chakrabarty, S. Lahiri
{"title":"基于复杂基准问题性能的元启发式算法的比较研究","authors":"Tithli Sadhu, Somanth Chowdhury, Shubham Mondal, Jagannath Roy, J. Chakrabarty, S. Lahiri","doi":"10.31181/dmame0306102022r","DOIUrl":null,"url":null,"abstract":"Metaheuristic approaches with extremely important improvements are very promising in the solution of intractable optimization problems. The objective of the present study is to test the capability of applications and compare the performance of the four selected algorithms from “classical” (simulated annealing (SA), genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE)) and “new generation” (firefly algorithm (FFA), krill herd (KH), grey wolf optimization (GWO), and symbiotic organism search (SOS)) each by solving selected benchmark problems that are used in the literature for algorithm testing purpose. The selected test problems had very complex objective functions and associated constraints with multiple local optima. Among all selected algorithms, the “new generation” SOS and KH algorithm successfully solved most of all the selected benchmark problems and achieved the best solution for most of them. Among four “classical” algorithms, DE, and PSO effectively attained the optimal solution which was very close to the best one. However, the “new generation” algorithm performed much better than the “classical” one. Therefore, no firm conclusion can be done about the universally best algorithm and their performance may be varied for different benchmark problems. However, in this study for the seven selected test problems, SOS and KH exhibited the most promising result and great potential with respect to execution time also. This study gives some insights to use SOS and KH as the best-performing algorithms to the novice user who can easily get lost in the plethora of large optimization algorithms.","PeriodicalId":32695,"journal":{"name":"Decision Making Applications in Management and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A comparative study of metaheuristics algorithms based on their performance of complex benchmark problems\",\"authors\":\"Tithli Sadhu, Somanth Chowdhury, Shubham Mondal, Jagannath Roy, J. Chakrabarty, S. Lahiri\",\"doi\":\"10.31181/dmame0306102022r\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metaheuristic approaches with extremely important improvements are very promising in the solution of intractable optimization problems. The objective of the present study is to test the capability of applications and compare the performance of the four selected algorithms from “classical” (simulated annealing (SA), genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE)) and “new generation” (firefly algorithm (FFA), krill herd (KH), grey wolf optimization (GWO), and symbiotic organism search (SOS)) each by solving selected benchmark problems that are used in the literature for algorithm testing purpose. The selected test problems had very complex objective functions and associated constraints with multiple local optima. Among all selected algorithms, the “new generation” SOS and KH algorithm successfully solved most of all the selected benchmark problems and achieved the best solution for most of them. Among four “classical” algorithms, DE, and PSO effectively attained the optimal solution which was very close to the best one. However, the “new generation” algorithm performed much better than the “classical” one. Therefore, no firm conclusion can be done about the universally best algorithm and their performance may be varied for different benchmark problems. However, in this study for the seven selected test problems, SOS and KH exhibited the most promising result and great potential with respect to execution time also. This study gives some insights to use SOS and KH as the best-performing algorithms to the novice user who can easily get lost in the plethora of large optimization algorithms.\",\"PeriodicalId\":32695,\"journal\":{\"name\":\"Decision Making Applications in Management and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Making Applications in Management and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31181/dmame0306102022r\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Making Applications in Management and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31181/dmame0306102022r","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
A comparative study of metaheuristics algorithms based on their performance of complex benchmark problems
Metaheuristic approaches with extremely important improvements are very promising in the solution of intractable optimization problems. The objective of the present study is to test the capability of applications and compare the performance of the four selected algorithms from “classical” (simulated annealing (SA), genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE)) and “new generation” (firefly algorithm (FFA), krill herd (KH), grey wolf optimization (GWO), and symbiotic organism search (SOS)) each by solving selected benchmark problems that are used in the literature for algorithm testing purpose. The selected test problems had very complex objective functions and associated constraints with multiple local optima. Among all selected algorithms, the “new generation” SOS and KH algorithm successfully solved most of all the selected benchmark problems and achieved the best solution for most of them. Among four “classical” algorithms, DE, and PSO effectively attained the optimal solution which was very close to the best one. However, the “new generation” algorithm performed much better than the “classical” one. Therefore, no firm conclusion can be done about the universally best algorithm and their performance may be varied for different benchmark problems. However, in this study for the seven selected test problems, SOS and KH exhibited the most promising result and great potential with respect to execution time also. This study gives some insights to use SOS and KH as the best-performing algorithms to the novice user who can easily get lost in the plethora of large optimization algorithms.