L. Smith, S. Shi, Jiang-tao Shi, Cuicui Wang, Yulin Tan, Zhou Haiying
{"title":"木材种类对自活化活性炭孔体积和表面积的影响","authors":"L. Smith, S. Shi, Jiang-tao Shi, Cuicui Wang, Yulin Tan, Zhou Haiying","doi":"10.22382/wfs-2020-017","DOIUrl":null,"url":null,"abstract":"In this study, the effect of wood species on pore structure of activated carbon (AC) generated from a self-activation process at different dwelling times was investigated. Ten hardwood species were selected (afromosia, alder, black cherry, makore, pomelle sapele, soft maple, teak, walnut, white oak and yellow poplar) were activated at 1050 O C for three dwelling times (10 h, 5 h, and 2.5 h). X-ray diffraction, Raman spectroscopy, and elemental analysis were performed on AC to analyze the carbon structure. The Brunauer-Emmett-Teller (BET) surface area, Barrett-Joyner-Halenda (BJH) pore volume, and BJH pore width of AC samples were determined. It was shown from the study that the mesopore width of AC decreased as micropores were transitioned to mesopores, leading to an increase in the pore volume and surface area. The density and porosity of the samples that underwent 2.5-h dwelling time were determined. The porosity of the wood and their resultant AC were compared. The porosity between the wood and its AC possessed a relationship when true bulk densities of the wood and carbon were compared. The porosity of wood had an impact on the bulk density of the carbon but not on the true density. No relationship was observed between the porosity and surface area of the carbon samples.","PeriodicalId":23620,"journal":{"name":"Wood and Fiber Science","volume":"52 1","pages":"191-207"},"PeriodicalIF":0.8000,"publicationDate":"2020-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Effect of Wood Species on the Pore Volume and Surface Area of Activated Carbon Derived from the Self Activation Process\",\"authors\":\"L. Smith, S. Shi, Jiang-tao Shi, Cuicui Wang, Yulin Tan, Zhou Haiying\",\"doi\":\"10.22382/wfs-2020-017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the effect of wood species on pore structure of activated carbon (AC) generated from a self-activation process at different dwelling times was investigated. Ten hardwood species were selected (afromosia, alder, black cherry, makore, pomelle sapele, soft maple, teak, walnut, white oak and yellow poplar) were activated at 1050 O C for three dwelling times (10 h, 5 h, and 2.5 h). X-ray diffraction, Raman spectroscopy, and elemental analysis were performed on AC to analyze the carbon structure. The Brunauer-Emmett-Teller (BET) surface area, Barrett-Joyner-Halenda (BJH) pore volume, and BJH pore width of AC samples were determined. It was shown from the study that the mesopore width of AC decreased as micropores were transitioned to mesopores, leading to an increase in the pore volume and surface area. The density and porosity of the samples that underwent 2.5-h dwelling time were determined. The porosity of the wood and their resultant AC were compared. The porosity between the wood and its AC possessed a relationship when true bulk densities of the wood and carbon were compared. The porosity of wood had an impact on the bulk density of the carbon but not on the true density. No relationship was observed between the porosity and surface area of the carbon samples.\",\"PeriodicalId\":23620,\"journal\":{\"name\":\"Wood and Fiber Science\",\"volume\":\"52 1\",\"pages\":\"191-207\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood and Fiber Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.22382/wfs-2020-017\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood and Fiber Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.22382/wfs-2020-017","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
Effect of Wood Species on the Pore Volume and Surface Area of Activated Carbon Derived from the Self Activation Process
In this study, the effect of wood species on pore structure of activated carbon (AC) generated from a self-activation process at different dwelling times was investigated. Ten hardwood species were selected (afromosia, alder, black cherry, makore, pomelle sapele, soft maple, teak, walnut, white oak and yellow poplar) were activated at 1050 O C for three dwelling times (10 h, 5 h, and 2.5 h). X-ray diffraction, Raman spectroscopy, and elemental analysis were performed on AC to analyze the carbon structure. The Brunauer-Emmett-Teller (BET) surface area, Barrett-Joyner-Halenda (BJH) pore volume, and BJH pore width of AC samples were determined. It was shown from the study that the mesopore width of AC decreased as micropores were transitioned to mesopores, leading to an increase in the pore volume and surface area. The density and porosity of the samples that underwent 2.5-h dwelling time were determined. The porosity of the wood and their resultant AC were compared. The porosity between the wood and its AC possessed a relationship when true bulk densities of the wood and carbon were compared. The porosity of wood had an impact on the bulk density of the carbon but not on the true density. No relationship was observed between the porosity and surface area of the carbon samples.
期刊介绍:
W&FS SCIENTIFIC ARTICLES INCLUDE THESE TOPIC AREAS:
-Wood and Lignocellulosic Materials-
Biomaterials-
Timber Structures and Engineering-
Biology-
Nano-technology-
Natural Fiber Composites-
Timber Treatment and Harvesting-
Botany-
Mycology-
Adhesives and Bioresins-
Business Management and Marketing-
Operations Research.
SWST members have access to all full-text electronic versions of current and past Wood and Fiber Science issues.