Dustin Kelly , Ralf D. Fischer , Mahyar Moaven , Sarah Morris , Barton C. Prorok , Brian Thurow
{"title":"L-PBF飞溅颗粒的三维同步跟踪和温度测量","authors":"Dustin Kelly , Ralf D. Fischer , Mahyar Moaven , Sarah Morris , Barton C. Prorok , Brian Thurow","doi":"10.1016/j.addlet.2023.100134","DOIUrl":null,"url":null,"abstract":"<div><p>This work discusses the implementation of a novel technique for simultaneous 3D particle tracking velocimetry and dual-wavelength pyrometry of spatter particles ejected during the Laser-Powder Bed Fusion (L-PBF) process using a single high-speed spectral plenoptic camera. In this methodology, particle tracking uses the Light-Field Ray Bundling algorithm paired with a four-frame best estimate track initiation with 3D Kalman filter for tracking to generate high-resolution, time-resolved 3D tracks of spatter particles. Utilizing the same light-field image data, spatter particle temperature is measured using dual-wavelength pyrometry that calculates temperature from the ratio of two narrow-band wavelength intensities. Preliminary results demonstrate the viability and potential of this technique for the L-PBF processes on the example of a turnaround laser scan. The temperature measurements indicate that the detected particles are in the liquid phase, with temperatures greater than 1950 <span><math><mtext>°</mtext></math></span>C. The simultaneous measurements demonstrate an overall deceleration and cooling of particles during their flight.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simultaneous 3D tracking and temperature measurements of L-PBF spatter particles using a single camera\",\"authors\":\"Dustin Kelly , Ralf D. Fischer , Mahyar Moaven , Sarah Morris , Barton C. Prorok , Brian Thurow\",\"doi\":\"10.1016/j.addlet.2023.100134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work discusses the implementation of a novel technique for simultaneous 3D particle tracking velocimetry and dual-wavelength pyrometry of spatter particles ejected during the Laser-Powder Bed Fusion (L-PBF) process using a single high-speed spectral plenoptic camera. In this methodology, particle tracking uses the Light-Field Ray Bundling algorithm paired with a four-frame best estimate track initiation with 3D Kalman filter for tracking to generate high-resolution, time-resolved 3D tracks of spatter particles. Utilizing the same light-field image data, spatter particle temperature is measured using dual-wavelength pyrometry that calculates temperature from the ratio of two narrow-band wavelength intensities. Preliminary results demonstrate the viability and potential of this technique for the L-PBF processes on the example of a turnaround laser scan. The temperature measurements indicate that the detected particles are in the liquid phase, with temperatures greater than 1950 <span><math><mtext>°</mtext></math></span>C. The simultaneous measurements demonstrate an overall deceleration and cooling of particles during their flight.</p></div>\",\"PeriodicalId\":72068,\"journal\":{\"name\":\"Additive manufacturing letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772369023000154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369023000154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Simultaneous 3D tracking and temperature measurements of L-PBF spatter particles using a single camera
This work discusses the implementation of a novel technique for simultaneous 3D particle tracking velocimetry and dual-wavelength pyrometry of spatter particles ejected during the Laser-Powder Bed Fusion (L-PBF) process using a single high-speed spectral plenoptic camera. In this methodology, particle tracking uses the Light-Field Ray Bundling algorithm paired with a four-frame best estimate track initiation with 3D Kalman filter for tracking to generate high-resolution, time-resolved 3D tracks of spatter particles. Utilizing the same light-field image data, spatter particle temperature is measured using dual-wavelength pyrometry that calculates temperature from the ratio of two narrow-band wavelength intensities. Preliminary results demonstrate the viability and potential of this technique for the L-PBF processes on the example of a turnaround laser scan. The temperature measurements indicate that the detected particles are in the liquid phase, with temperatures greater than 1950 C. The simultaneous measurements demonstrate an overall deceleration and cooling of particles during their flight.