使用FURIA改进任务挖掘

IF 0.8 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Acta Informatica Pragensia Pub Date : 2022-07-02 DOI:10.18267/j.aip.183
P. Průcha, Jan Skrbek
{"title":"使用FURIA改进任务挖掘","authors":"P. Průcha, Jan Skrbek","doi":"10.18267/j.aip.183","DOIUrl":null,"url":null,"abstract":"Companies that use robotic process automation very often deal with the problem of selecting a suitable process for automation. Manual selection of a suitable process is very time-consuming. Therefore, part of the process mining field specializes in selecting suitable processes for automation based on process data. This work deals with the possibility of improving the existing method for finding suitable candidates for automation. To improve the current approach, we remove the limiting restrictions of the current method and use another FURIA rule-learning algorithm for rule detection. We use three different datasets and the WEKA platform to validate the results. The results show that FURIA and the removal of strictly deterministic rules as restrictions turned out to be a competitive approach to the original one. On data presented in this study, the selected approach detected more candidates for automation and with higher accuracy. This study implies that FURIA and not using a strictly deterministic process is an appropriate procedure with certain use cases as other procedures mentioned in this study.","PeriodicalId":36592,"journal":{"name":"Acta Informatica Pragensia","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Use of FURIA for Improving Task Mining\",\"authors\":\"P. Průcha, Jan Skrbek\",\"doi\":\"10.18267/j.aip.183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Companies that use robotic process automation very often deal with the problem of selecting a suitable process for automation. Manual selection of a suitable process is very time-consuming. Therefore, part of the process mining field specializes in selecting suitable processes for automation based on process data. This work deals with the possibility of improving the existing method for finding suitable candidates for automation. To improve the current approach, we remove the limiting restrictions of the current method and use another FURIA rule-learning algorithm for rule detection. We use three different datasets and the WEKA platform to validate the results. The results show that FURIA and the removal of strictly deterministic rules as restrictions turned out to be a competitive approach to the original one. On data presented in this study, the selected approach detected more candidates for automation and with higher accuracy. This study implies that FURIA and not using a strictly deterministic process is an appropriate procedure with certain use cases as other procedures mentioned in this study.\",\"PeriodicalId\":36592,\"journal\":{\"name\":\"Acta Informatica Pragensia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Informatica Pragensia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18267/j.aip.183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica Pragensia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18267/j.aip.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

摘要

使用机器人流程自动化的公司经常要处理选择合适的流程进行自动化的问题。手动选择合适的流程非常耗时。因此,流程挖掘领域的一部分专门根据流程数据选择合适的流程进行自动化。这项工作探讨了改进现有方法以寻找合适的自动化候选人的可能性。为了改进现有方法,我们取消了现有方法的限制,并使用另一种FURIA规则学习算法进行规则检测。我们使用三个不同的数据集和WEKA平台来验证结果。结果表明,FURIA和取消严格确定性规则作为限制是对原始方法的一种竞争方法。根据本研究中提供的数据,所选方法检测到更多的自动化候选者,并且具有更高的准确性。本研究表明,与本研究中提到的其他程序一样,FURIA和不使用严格确定性程序是一种适当的程序,具有某些用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of FURIA for Improving Task Mining
Companies that use robotic process automation very often deal with the problem of selecting a suitable process for automation. Manual selection of a suitable process is very time-consuming. Therefore, part of the process mining field specializes in selecting suitable processes for automation based on process data. This work deals with the possibility of improving the existing method for finding suitable candidates for automation. To improve the current approach, we remove the limiting restrictions of the current method and use another FURIA rule-learning algorithm for rule detection. We use three different datasets and the WEKA platform to validate the results. The results show that FURIA and the removal of strictly deterministic rules as restrictions turned out to be a competitive approach to the original one. On data presented in this study, the selected approach detected more candidates for automation and with higher accuracy. This study implies that FURIA and not using a strictly deterministic process is an appropriate procedure with certain use cases as other procedures mentioned in this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Informatica Pragensia
Acta Informatica Pragensia Social Sciences-Library and Information Sciences
CiteScore
1.70
自引率
0.00%
发文量
26
审稿时长
12 weeks
期刊最新文献
Visualisation of User Stories in UML Models: A Systematic Literature Review Safe Haven for Asian Equity Markets During Financial Distress: Bitcoin Versus Gold Consumer Behaviour in Gamified Environment: A Bibliometric and Systematic Literature Review in Business and Management Area Impact of Women Driving Rights on Adoption and Usage of E-hailing Applications in Saudi Arabia Use of Data Mining for Analysis of Czech Real Estate Market
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1