{"title":"超细TiB2-ZrO2复合材料的合成及快速烧结","authors":"I. Shon","doi":"10.3365/kjmm.2023.61.5.324","DOIUrl":null,"url":null,"abstract":"TiB<sub>2</sub> is considered candidate materials for ultra-high temperature ceramics and cutting tools because of its a high thermal conductivity, a low coefficient of thermal expansion, a high hardness and high melting temperature. Despite these attractive properties, TiB2 applications are limited because it has a low fracture toughness below the brittle-ductile transition temperature. To improve on its mechanical properties, the approach universally utilized has been to add secondary materials to form a composite and to fabricate an ultra - fine material. A dense ultra - fine TiB<sub>2</sub>- ZrO<sub>2</sub> composite was rapidly sintered using pulsed high current activated heating (PHCAH) methods within 3 min in one step from the mechanically synthesized the powders of TiB<sub>2</sub> and ZrO<sub>2</sub> . Consolidation was reached using an effective combination of mechanical pressure and the pulsed high current. A highly dense TiB<sub>2</sub>-ZrO<sub>2</sub> material with relative density of 97.2% was made by the simultaneous application of 75 MPa pressure and a pulsed 2500 A current. The grain sizes of TiB<sub>2</sub> and ZrO<sub>2</sub> in the composite were 135 nm and 84 nm, respectively. The fracture toughness and hardness of the TiB<sub>2</sub> -ZrO<sub>2</sub> composite were 11.2 MPa.m<sup>1/2</sup> and 957 kg/mm<sup>2</sup> , respectively. The fracture toughness of the TiB<sub>2</sub> -ZrO<sub>2</sub> composite was three times higher than that of monolithic TiB<sub>2</sub> .","PeriodicalId":17894,"journal":{"name":"Korean Journal of Metals and Materials","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Rapid Sintering of Ultra Fine TiB2-ZrO2 Composite\",\"authors\":\"I. Shon\",\"doi\":\"10.3365/kjmm.2023.61.5.324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TiB<sub>2</sub> is considered candidate materials for ultra-high temperature ceramics and cutting tools because of its a high thermal conductivity, a low coefficient of thermal expansion, a high hardness and high melting temperature. Despite these attractive properties, TiB2 applications are limited because it has a low fracture toughness below the brittle-ductile transition temperature. To improve on its mechanical properties, the approach universally utilized has been to add secondary materials to form a composite and to fabricate an ultra - fine material. A dense ultra - fine TiB<sub>2</sub>- ZrO<sub>2</sub> composite was rapidly sintered using pulsed high current activated heating (PHCAH) methods within 3 min in one step from the mechanically synthesized the powders of TiB<sub>2</sub> and ZrO<sub>2</sub> . Consolidation was reached using an effective combination of mechanical pressure and the pulsed high current. A highly dense TiB<sub>2</sub>-ZrO<sub>2</sub> material with relative density of 97.2% was made by the simultaneous application of 75 MPa pressure and a pulsed 2500 A current. The grain sizes of TiB<sub>2</sub> and ZrO<sub>2</sub> in the composite were 135 nm and 84 nm, respectively. The fracture toughness and hardness of the TiB<sub>2</sub> -ZrO<sub>2</sub> composite were 11.2 MPa.m<sup>1/2</sup> and 957 kg/mm<sup>2</sup> , respectively. The fracture toughness of the TiB<sub>2</sub> -ZrO<sub>2</sub> composite was three times higher than that of monolithic TiB<sub>2</sub> .\",\"PeriodicalId\":17894,\"journal\":{\"name\":\"Korean Journal of Metals and Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Metals and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3365/kjmm.2023.61.5.324\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Metals and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3365/kjmm.2023.61.5.324","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis and Rapid Sintering of Ultra Fine TiB2-ZrO2 Composite
TiB2 is considered candidate materials for ultra-high temperature ceramics and cutting tools because of its a high thermal conductivity, a low coefficient of thermal expansion, a high hardness and high melting temperature. Despite these attractive properties, TiB2 applications are limited because it has a low fracture toughness below the brittle-ductile transition temperature. To improve on its mechanical properties, the approach universally utilized has been to add secondary materials to form a composite and to fabricate an ultra - fine material. A dense ultra - fine TiB2- ZrO2 composite was rapidly sintered using pulsed high current activated heating (PHCAH) methods within 3 min in one step from the mechanically synthesized the powders of TiB2 and ZrO2 . Consolidation was reached using an effective combination of mechanical pressure and the pulsed high current. A highly dense TiB2-ZrO2 material with relative density of 97.2% was made by the simultaneous application of 75 MPa pressure and a pulsed 2500 A current. The grain sizes of TiB2 and ZrO2 in the composite were 135 nm and 84 nm, respectively. The fracture toughness and hardness of the TiB2 -ZrO2 composite were 11.2 MPa.m1/2 and 957 kg/mm2 , respectively. The fracture toughness of the TiB2 -ZrO2 composite was three times higher than that of monolithic TiB2 .
期刊介绍:
The Korean Journal of Metals and Materials is a representative Korean-language journal of the Korean Institute of Metals and Materials (KIM); it publishes domestic and foreign academic papers related to metals and materials, in abroad range of fields from metals and materials to nano-materials, biomaterials, functional materials, energy materials, and new materials, and its official ISO designation is Korean J. Met. Mater.