类似彗星的辐射诱发反应

IF 1.7 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS International Journal of Astrobiology Pub Date : 2022-12-01 DOI:10.1017/s1473550422000416
A. López-Islas, A. Negrón-Mendoza
{"title":"类似彗星的辐射诱发反应","authors":"A. López-Islas, A. Negrón-Mendoza","doi":"10.1017/s1473550422000416","DOIUrl":null,"url":null,"abstract":"\n Comets are a source of prebiotic molecules that likely enriched the early Earth during the Late Heavy Bombardment period. Laboratory experiments that replicate cometary conditions may facilitate understanding of the chemical reactions and supplement observational studies of these icy bodies. Prebiotic compounds, such as formic acid and formaldehyde, have been observed in comets. Furthermore, these compounds can easily be formed in experimental models using a variety of gas combinations and energy sources. We conducted experimental cometary simulations using radiation chemistry tools to obtain insight into the possible fate of formic acid and formaldehyde. The main results suggest a redundant system, signifying that the irradiation of formic acid forms formaldehyde molecules and vice versa. This phenomenon ensures the permanence of prebiotic molecules in high-radiation environments. Additionally, the potential role of forsterite and graphite was explored in cometary simulations. Our experimental results show the differential formation of aldehydes and other carbonyl-containing compounds dependent on the mineral phase present.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiation-induced reactions in comet analogues\",\"authors\":\"A. López-Islas, A. Negrón-Mendoza\",\"doi\":\"10.1017/s1473550422000416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Comets are a source of prebiotic molecules that likely enriched the early Earth during the Late Heavy Bombardment period. Laboratory experiments that replicate cometary conditions may facilitate understanding of the chemical reactions and supplement observational studies of these icy bodies. Prebiotic compounds, such as formic acid and formaldehyde, have been observed in comets. Furthermore, these compounds can easily be formed in experimental models using a variety of gas combinations and energy sources. We conducted experimental cometary simulations using radiation chemistry tools to obtain insight into the possible fate of formic acid and formaldehyde. The main results suggest a redundant system, signifying that the irradiation of formic acid forms formaldehyde molecules and vice versa. This phenomenon ensures the permanence of prebiotic molecules in high-radiation environments. Additionally, the potential role of forsterite and graphite was explored in cometary simulations. Our experimental results show the differential formation of aldehydes and other carbonyl-containing compounds dependent on the mineral phase present.\",\"PeriodicalId\":13879,\"journal\":{\"name\":\"International Journal of Astrobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Astrobiology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/s1473550422000416\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s1473550422000416","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

彗星是生命前分子的来源,可能在晚期重轰炸时期丰富了早期地球。复制彗星条件的实验室实验可能有助于理解化学反应,并补充对这些冰体的观测研究。益生元化合物,如甲酸和甲醛,已经在彗星中被观察到。此外,这些化合物可以很容易地在使用各种气体组合和能源的实验模型中形成。我们使用辐射化学工具进行了彗星模拟实验,以深入了解甲酸和甲醛的可能命运。主要结果表明一个冗余系统,表明甲酸辐照形成甲醛分子,反之亦然。这种现象保证了益生元分子在高辐射环境中的持久性。此外,在彗星模拟中还探索了橄榄石和石墨的潜在作用。我们的实验结果表明,醛和其他含羰基化合物的不同形成取决于存在的矿物相。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radiation-induced reactions in comet analogues
Comets are a source of prebiotic molecules that likely enriched the early Earth during the Late Heavy Bombardment period. Laboratory experiments that replicate cometary conditions may facilitate understanding of the chemical reactions and supplement observational studies of these icy bodies. Prebiotic compounds, such as formic acid and formaldehyde, have been observed in comets. Furthermore, these compounds can easily be formed in experimental models using a variety of gas combinations and energy sources. We conducted experimental cometary simulations using radiation chemistry tools to obtain insight into the possible fate of formic acid and formaldehyde. The main results suggest a redundant system, signifying that the irradiation of formic acid forms formaldehyde molecules and vice versa. This phenomenon ensures the permanence of prebiotic molecules in high-radiation environments. Additionally, the potential role of forsterite and graphite was explored in cometary simulations. Our experimental results show the differential formation of aldehydes and other carbonyl-containing compounds dependent on the mineral phase present.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Astrobiology
International Journal of Astrobiology 地学天文-地球科学综合
CiteScore
3.70
自引率
11.80%
发文量
45
审稿时长
>12 weeks
期刊介绍: International Journal of Astrobiology is the peer-reviewed forum for practitioners in this exciting interdisciplinary field. Coverage includes cosmic prebiotic chemistry, planetary evolution, the search for planetary systems and habitable zones, extremophile biology and experimental simulation of extraterrestrial environments, Mars as an abode of life, life detection in our solar system and beyond, the search for extraterrestrial intelligence, the history of the science of astrobiology, as well as societal and educational aspects of astrobiology. Occasionally an issue of the journal is devoted to the keynote plenary research papers from an international meeting. A notable feature of the journal is the global distribution of its authors.
期刊最新文献
Role of Epigenetic Modification in the Intergeneration Transmission of War Trauma. Succession of the bacterial community from a spacecraft assembly clean room when enriched in brines relevant to Mars Astroecology: bridging the gap between ecology and astrobiology Psychological aspects in unidentified anomalous phenomena (UAP) witnesses Children of time: the geological recency of intelligence and its implications for SETI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1