{"title":"基于参数化空间包络的多工位柔性装配变化建模","authors":"C. Luo, Jiaqi Nie, P. Franciosa, D. Ceglarek","doi":"10.1115/1.4062579","DOIUrl":null,"url":null,"abstract":"\n Non-rigid compliant parts are widely used in industries today. One of the biggest challenges facing the industries is geometric variation management of these compliant parts, which directly impacts product quality and functionality. Existing rigid body based variation modeling is not suitable for compliant assembly while finite element analysis based methods have the disadvantage of requiring heavy computation efforts. In view of that, this paper develops a novel methodology to evaluate geometric variation propagation in multi-station compliant assembly based upon parametric space envelope (i.e. variation tool constructed from parametric curves). Three sources of variation: location-led positional variation, assembly deformation-induced variation and station transition caused variation are analyzed. Under proposal, geometric variations are modeled indirectly through a compact set of boundary control points. Compared with existing methods where geometric variation is modeled through targeting key feature points on the manufacturing part, the proposed approach brings modeling accuracy and computation efficiency. The effectiveness of the method is illustrated and verified through an industrial case study on a multi-station compliant panel assembly. The developed method provides industries a new way to manage geometric variation from compliant assembly.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Variation in Multi-station Compliant Assembly using Parametric Space Envelope\",\"authors\":\"C. Luo, Jiaqi Nie, P. Franciosa, D. Ceglarek\",\"doi\":\"10.1115/1.4062579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Non-rigid compliant parts are widely used in industries today. One of the biggest challenges facing the industries is geometric variation management of these compliant parts, which directly impacts product quality and functionality. Existing rigid body based variation modeling is not suitable for compliant assembly while finite element analysis based methods have the disadvantage of requiring heavy computation efforts. In view of that, this paper develops a novel methodology to evaluate geometric variation propagation in multi-station compliant assembly based upon parametric space envelope (i.e. variation tool constructed from parametric curves). Three sources of variation: location-led positional variation, assembly deformation-induced variation and station transition caused variation are analyzed. Under proposal, geometric variations are modeled indirectly through a compact set of boundary control points. Compared with existing methods where geometric variation is modeled through targeting key feature points on the manufacturing part, the proposed approach brings modeling accuracy and computation efficiency. The effectiveness of the method is illustrated and verified through an industrial case study on a multi-station compliant panel assembly. The developed method provides industries a new way to manage geometric variation from compliant assembly.\",\"PeriodicalId\":16299,\"journal\":{\"name\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062579\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062579","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Modeling Variation in Multi-station Compliant Assembly using Parametric Space Envelope
Non-rigid compliant parts are widely used in industries today. One of the biggest challenges facing the industries is geometric variation management of these compliant parts, which directly impacts product quality and functionality. Existing rigid body based variation modeling is not suitable for compliant assembly while finite element analysis based methods have the disadvantage of requiring heavy computation efforts. In view of that, this paper develops a novel methodology to evaluate geometric variation propagation in multi-station compliant assembly based upon parametric space envelope (i.e. variation tool constructed from parametric curves). Three sources of variation: location-led positional variation, assembly deformation-induced variation and station transition caused variation are analyzed. Under proposal, geometric variations are modeled indirectly through a compact set of boundary control points. Compared with existing methods where geometric variation is modeled through targeting key feature points on the manufacturing part, the proposed approach brings modeling accuracy and computation efficiency. The effectiveness of the method is illustrated and verified through an industrial case study on a multi-station compliant panel assembly. The developed method provides industries a new way to manage geometric variation from compliant assembly.
期刊介绍:
Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining