零成功情况下二项比例的置信上限求解

Courtney E. McCracken, S. Looney
{"title":"零成功情况下二项比例的置信上限求解","authors":"Courtney E. McCracken, S. Looney","doi":"10.4172/2155-6180.1000338","DOIUrl":null,"url":null,"abstract":"We consider confidence interval estimation for a binomial proportion when the data have already been observed and x, the observed number of successes in a sample of size n, is zero. In this case, the main objective of the investigator is usually to obtain a reasonable upper bound for the true probability of success, i.e., the upper limit of a one-sided confidence interval. In this article, we use observed interval length and p-confidence to evaluate eight methods for finding the upper limit of a confidence interval for a binomial proportion when x is known to be zero. Long-run properties such as expected interval length and coverage probability are not applicable because the sample data have already been observed. We show that many popular approximate methods that are known to have good long-run properties in the general setting perform poorly when x=0 and recommend that the Clopper-Pearson exact method be used instead.","PeriodicalId":87294,"journal":{"name":"Journal of biometrics & biostatistics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2155-6180.1000338","citationCount":"11","resultStr":"{\"title\":\"On Finding the Upper Confidence Limit for a Binomial Proportion when Zero Successes are Observed\",\"authors\":\"Courtney E. McCracken, S. Looney\",\"doi\":\"10.4172/2155-6180.1000338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider confidence interval estimation for a binomial proportion when the data have already been observed and x, the observed number of successes in a sample of size n, is zero. In this case, the main objective of the investigator is usually to obtain a reasonable upper bound for the true probability of success, i.e., the upper limit of a one-sided confidence interval. In this article, we use observed interval length and p-confidence to evaluate eight methods for finding the upper limit of a confidence interval for a binomial proportion when x is known to be zero. Long-run properties such as expected interval length and coverage probability are not applicable because the sample data have already been observed. We show that many popular approximate methods that are known to have good long-run properties in the general setting perform poorly when x=0 and recommend that the Clopper-Pearson exact method be used instead.\",\"PeriodicalId\":87294,\"journal\":{\"name\":\"Journal of biometrics & biostatistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4172/2155-6180.1000338\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biometrics & biostatistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2155-6180.1000338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biometrics & biostatistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-6180.1000338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们考虑二项比例的置信区间估计,当数据已经被观察到,并且在大小为n的样本中观察到的成功数x为零。在这种情况下,研究者的主要目标通常是获得真实成功概率的合理上界,即单侧置信区间的上限。在本文中,我们使用观察到的区间长度和p置信度来评估当x已知为零时寻找二项式比例置信区间上限的八种方法。长期运行的属性,如预期的间隔长度和覆盖概率不适用,因为样本数据已经被观察到。我们表明,当x=0时,许多已知在一般设置中具有良好长期性能的流行近似方法表现不佳,并建议使用Clopper-Pearson精确方法代替。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Finding the Upper Confidence Limit for a Binomial Proportion when Zero Successes are Observed
We consider confidence interval estimation for a binomial proportion when the data have already been observed and x, the observed number of successes in a sample of size n, is zero. In this case, the main objective of the investigator is usually to obtain a reasonable upper bound for the true probability of success, i.e., the upper limit of a one-sided confidence interval. In this article, we use observed interval length and p-confidence to evaluate eight methods for finding the upper limit of a confidence interval for a binomial proportion when x is known to be zero. Long-run properties such as expected interval length and coverage probability are not applicable because the sample data have already been observed. We show that many popular approximate methods that are known to have good long-run properties in the general setting perform poorly when x=0 and recommend that the Clopper-Pearson exact method be used instead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PROSPECTIVELY ESTIMATING THE AGE OF INITIATION OF E-CIGARETTES AMONG U.S. YOUTH: FINDINGS FROM THE POPULATION ASSESSMENT OF TOBACCO AND HEALTH (PATH) STUDY, 2013-2017. The Kumaraswamy-Rani Distribution and Its Applications Analytical Visual Methods to Describe Practice Patterns in a Newly Diagnosed Multiple Myeloma Non-Interventional Disease Registry Short Prognostic APP for Multiple Myeloma Sample Size Charts for Spearman and Kendall Coefficients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1