{"title":"一刀切:肯尼亚芒果果蝇病虫害综合治理实践的异质经济影响——一种机器学习方法","authors":"Kelvin Mulungu, Zewdu Ayalew Abro, Wambui Beatrice Muriithi, Menale Kassie, Miachael Kidoido, Subramanian Sevgan, Samira Mohamed, Chrysantus Tanga, Fathiya Khamis","doi":"10.1111/1477-9552.12550","DOIUrl":null,"url":null,"abstract":"<p>Most previous studies evaluating agricultural technology adoption focus on estimating homogeneous average treatment effects across technology adopters. Understanding the heterogeneous effects and drivers of impact heterogeneity should enable interventions to be better targeted to maximise benefits. We apply machine learning using data from a randomised controlled trial to estimate the heterogeneous treatment effect of fruit fly IPM practices (i.e., parasitoids, orchard sanitation, use of food bait, biopesticides, male annihilation technique, and their combinations) in Central Kenya. Results suggest significant heterogeneity in the effect of IPM practices conditioned on household characteristics. The most important covariates explaining differences in treatment effects are wealth, distance to the mango fruit market, age of the household head, labour and experience in mango farming. Results further indicate that those with fewer mango trees benefit more from most IPM practices. Additional analysis across other covariates shows mixed results but generally suggests significant differences between households benefiting the most and those benefiting the least from IPM practices.</p>","PeriodicalId":14994,"journal":{"name":"Journal of Agricultural Economics","volume":"75 1","pages":"261-279"},"PeriodicalIF":3.4000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1477-9552.12550","citationCount":"0","resultStr":"{\"title\":\"One size does not fit all: Heterogeneous economic impact of integrated pest management practices for mango fruit flies in Kenya—a machine learning approach\",\"authors\":\"Kelvin Mulungu, Zewdu Ayalew Abro, Wambui Beatrice Muriithi, Menale Kassie, Miachael Kidoido, Subramanian Sevgan, Samira Mohamed, Chrysantus Tanga, Fathiya Khamis\",\"doi\":\"10.1111/1477-9552.12550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Most previous studies evaluating agricultural technology adoption focus on estimating homogeneous average treatment effects across technology adopters. Understanding the heterogeneous effects and drivers of impact heterogeneity should enable interventions to be better targeted to maximise benefits. We apply machine learning using data from a randomised controlled trial to estimate the heterogeneous treatment effect of fruit fly IPM practices (i.e., parasitoids, orchard sanitation, use of food bait, biopesticides, male annihilation technique, and their combinations) in Central Kenya. Results suggest significant heterogeneity in the effect of IPM practices conditioned on household characteristics. The most important covariates explaining differences in treatment effects are wealth, distance to the mango fruit market, age of the household head, labour and experience in mango farming. Results further indicate that those with fewer mango trees benefit more from most IPM practices. Additional analysis across other covariates shows mixed results but generally suggests significant differences between households benefiting the most and those benefiting the least from IPM practices.</p>\",\"PeriodicalId\":14994,\"journal\":{\"name\":\"Journal of Agricultural Economics\",\"volume\":\"75 1\",\"pages\":\"261-279\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1477-9552.12550\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1477-9552.12550\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ECONOMICS & POLICY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Economics","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1477-9552.12550","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ECONOMICS & POLICY","Score":null,"Total":0}
One size does not fit all: Heterogeneous economic impact of integrated pest management practices for mango fruit flies in Kenya—a machine learning approach
Most previous studies evaluating agricultural technology adoption focus on estimating homogeneous average treatment effects across technology adopters. Understanding the heterogeneous effects and drivers of impact heterogeneity should enable interventions to be better targeted to maximise benefits. We apply machine learning using data from a randomised controlled trial to estimate the heterogeneous treatment effect of fruit fly IPM practices (i.e., parasitoids, orchard sanitation, use of food bait, biopesticides, male annihilation technique, and their combinations) in Central Kenya. Results suggest significant heterogeneity in the effect of IPM practices conditioned on household characteristics. The most important covariates explaining differences in treatment effects are wealth, distance to the mango fruit market, age of the household head, labour and experience in mango farming. Results further indicate that those with fewer mango trees benefit more from most IPM practices. Additional analysis across other covariates shows mixed results but generally suggests significant differences between households benefiting the most and those benefiting the least from IPM practices.
期刊介绍:
Published on behalf of the Agricultural Economics Society, the Journal of Agricultural Economics is a leading international professional journal, providing a forum for research into agricultural economics and related disciplines such as statistics, marketing, business management, politics, history and sociology, and their application to issues in the agricultural, food, and related industries; rural communities, and the environment.
Each issue of the JAE contains articles, notes and book reviews as well as information relating to the Agricultural Economics Society. Published 3 times a year, it is received by members and institutional subscribers in 69 countries. With contributions from leading international scholars, the JAE is a leading citation for agricultural economics and policy. Published articles either deal with new developments in research and methods of analysis, or apply existing methods and techniques to new problems and situations which are of general interest to the Journal’s international readership.