{"title":"基于遗传算法和多目标适应度函数的压水堆堆芯加载方式优化","authors":"W. Kubiński, P. Darnowski, Kamil Chęć","doi":"10.2478/nuka-2021-0022","DOIUrl":null,"url":null,"abstract":"Abstract The study demonstrates an application of genetic algorithms (GAs) in the optimization of the first core loading pattern. The Massachusetts Institute of Technology (MIT) BEAVRS pressurized water reactor (PWR) model was applied with PARCS nodal-diffusion core simulator coupled with GA numerical tool to perform pattern selection. In principle, GAs have been successfully used in many nuclear engineering problems such as core geometry optimization and fuel configuration. In many cases, however, these analyses focused on optimizing only a single parameter, such as the effective neutron multiplication factor (keff), and often limited to the simplified core model. On the contrary, the GAs developed in this work are equipped with multiple-purpose fitness function (FF) and allow the optimization of more than one parameter at the same time, and these were applied to a realistic full-core problem. The main parameters of interest in this study were the total power peaking factor (PPF) and the length of the fuel cycle. The basic purpose of this study was to improve the economics by finding longer fuel cycle with more uniform power/flux distribution. Proper FFs were developed, tested, and implemented and their results were compared with the reference BEAVRS first fuel cycle. In the two analysed test scenarios, it was possible to extend the first fuel cycle while maintaining lower or similar PPF, in comparison with the BEAVRS core, but for the price of increased initial reactivity.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"66 1","pages":"147 - 151"},"PeriodicalIF":0.7000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimization of the loading pattern of the PWR core using genetic algorithms and multi-purpose fitness function\",\"authors\":\"W. Kubiński, P. Darnowski, Kamil Chęć\",\"doi\":\"10.2478/nuka-2021-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The study demonstrates an application of genetic algorithms (GAs) in the optimization of the first core loading pattern. The Massachusetts Institute of Technology (MIT) BEAVRS pressurized water reactor (PWR) model was applied with PARCS nodal-diffusion core simulator coupled with GA numerical tool to perform pattern selection. In principle, GAs have been successfully used in many nuclear engineering problems such as core geometry optimization and fuel configuration. In many cases, however, these analyses focused on optimizing only a single parameter, such as the effective neutron multiplication factor (keff), and often limited to the simplified core model. On the contrary, the GAs developed in this work are equipped with multiple-purpose fitness function (FF) and allow the optimization of more than one parameter at the same time, and these were applied to a realistic full-core problem. The main parameters of interest in this study were the total power peaking factor (PPF) and the length of the fuel cycle. The basic purpose of this study was to improve the economics by finding longer fuel cycle with more uniform power/flux distribution. Proper FFs were developed, tested, and implemented and their results were compared with the reference BEAVRS first fuel cycle. In the two analysed test scenarios, it was possible to extend the first fuel cycle while maintaining lower or similar PPF, in comparison with the BEAVRS core, but for the price of increased initial reactivity.\",\"PeriodicalId\":19467,\"journal\":{\"name\":\"Nukleonika\",\"volume\":\"66 1\",\"pages\":\"147 - 151\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nukleonika\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.2478/nuka-2021-0022\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nukleonika","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2478/nuka-2021-0022","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Optimization of the loading pattern of the PWR core using genetic algorithms and multi-purpose fitness function
Abstract The study demonstrates an application of genetic algorithms (GAs) in the optimization of the first core loading pattern. The Massachusetts Institute of Technology (MIT) BEAVRS pressurized water reactor (PWR) model was applied with PARCS nodal-diffusion core simulator coupled with GA numerical tool to perform pattern selection. In principle, GAs have been successfully used in many nuclear engineering problems such as core geometry optimization and fuel configuration. In many cases, however, these analyses focused on optimizing only a single parameter, such as the effective neutron multiplication factor (keff), and often limited to the simplified core model. On the contrary, the GAs developed in this work are equipped with multiple-purpose fitness function (FF) and allow the optimization of more than one parameter at the same time, and these were applied to a realistic full-core problem. The main parameters of interest in this study were the total power peaking factor (PPF) and the length of the fuel cycle. The basic purpose of this study was to improve the economics by finding longer fuel cycle with more uniform power/flux distribution. Proper FFs were developed, tested, and implemented and their results were compared with the reference BEAVRS first fuel cycle. In the two analysed test scenarios, it was possible to extend the first fuel cycle while maintaining lower or similar PPF, in comparison with the BEAVRS core, but for the price of increased initial reactivity.
期刊介绍:
"Nukleonika" is an international peer-reviewed, scientific journal publishing original top quality papers on fundamental, experimental, applied and theoretical aspects of nuclear sciences.
The fields of research include:
radiochemistry, radiation measurements, application of radionuclides in various branches of science and technology, chemistry of f-block elements, radiation chemistry, radiation physics, activation analysis, nuclear medicine, radiobiology, radiation safety, nuclear industrial electronics, environmental protection, radioactive wastes, nuclear technologies in material and process engineering, radioisotope diagnostic methods of engineering objects, nuclear physics, nuclear reactors and nuclear power, reactor physics, nuclear safety, fuel cycle, reactor calculations, nuclear chemical engineering, nuclear fusion, plasma physics etc.