{"title":"回复关于“非经典脑功能的实验适应症”的评论(2022物理通讯6 105001)","authors":"C. Kerskens, David López Pérez","doi":"10.1088/2399-6528/acc636","DOIUrl":null,"url":null,"abstract":"We have recently suggested a proposal to explore non-classicality in the brain, for which we developed an entanglement witness protocol using MRI. The witness protocol intended to find spin interactions which could not be explained by classical interactions, based on intermolecular multiple quantum coherence (iMQC). As for Warren’s comments, we show in more detail that this was indeed the case; our observations were certainly not generated by interactions based on the iMQC model. Further, we discuss some additional details not present in the original paper.","PeriodicalId":47089,"journal":{"name":"Journal of Physics Communications","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reply to Comment on: ‘Experimental indications of non-classical brain function’ (2022 Journal of Physics Communications 6 105001)\",\"authors\":\"C. Kerskens, David López Pérez\",\"doi\":\"10.1088/2399-6528/acc636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have recently suggested a proposal to explore non-classicality in the brain, for which we developed an entanglement witness protocol using MRI. The witness protocol intended to find spin interactions which could not be explained by classical interactions, based on intermolecular multiple quantum coherence (iMQC). As for Warren’s comments, we show in more detail that this was indeed the case; our observations were certainly not generated by interactions based on the iMQC model. Further, we discuss some additional details not present in the original paper.\",\"PeriodicalId\":47089,\"journal\":{\"name\":\"Journal of Physics Communications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-6528/acc636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/acc636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Reply to Comment on: ‘Experimental indications of non-classical brain function’ (2022 Journal of Physics Communications 6 105001)
We have recently suggested a proposal to explore non-classicality in the brain, for which we developed an entanglement witness protocol using MRI. The witness protocol intended to find spin interactions which could not be explained by classical interactions, based on intermolecular multiple quantum coherence (iMQC). As for Warren’s comments, we show in more detail that this was indeed the case; our observations were certainly not generated by interactions based on the iMQC model. Further, we discuss some additional details not present in the original paper.