益生菌包封技术概述

S. Ramadevi, S. Meenakshi
{"title":"益生菌包封技术概述","authors":"S. Ramadevi, S. Meenakshi","doi":"10.5604/01.3001.0016.0978","DOIUrl":null,"url":null,"abstract":"Nanotechnology is one of the highly evolving fields of research having immense potential in various fields of healthcare sectors. The very advent of nanotechnology lies in its ability to serve as a targeted drug delivery system. The introduction of a new branch namely bionanotechnology has further expanded the scope, especially in the diagnostics and treatment of various diseases. Probiotics being a natural source with a plethora of beneficial properties have been investigated actively in recent days. Probiotics administered into the digestive system have been shown to promote gut health by increasing the microbial balance in the gut. However, the bioavailability of such administered probiotics remains a major concern. These probiotics are protected through microencapsulation techniques, which encapsulate them in small capsules. Several nanoparticles with varied dimensions, forms, surfaces and composites have recently been investigated for probiotic microencapsulation. This has been used for various therapeutic applications, such as drug delivery. This review gives an insight on various materials and strategies used for probiotic encapsulation.\n\nThe main aim of this review is to give a perception of the different types of methods of probiotic encapsulation.\n\nThis review implies the significance of probiotics and subsequent active release in the gastrointestinal system. Different sections of this review paper, on the other hand, may offer up new opportunities for comprehensive research in the field of microencapsulation for boosting probiotic viability and also talks about the various encapsulating materials that has been employed.\n\nThis review emphasizes more perceptions about the ongoing and imminent techniques for encapsulating probiotics.\n\n","PeriodicalId":8297,"journal":{"name":"Archives of materials science and engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An epitome on encapsulation of probiotics\",\"authors\":\"S. Ramadevi, S. Meenakshi\",\"doi\":\"10.5604/01.3001.0016.0978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanotechnology is one of the highly evolving fields of research having immense potential in various fields of healthcare sectors. The very advent of nanotechnology lies in its ability to serve as a targeted drug delivery system. The introduction of a new branch namely bionanotechnology has further expanded the scope, especially in the diagnostics and treatment of various diseases. Probiotics being a natural source with a plethora of beneficial properties have been investigated actively in recent days. Probiotics administered into the digestive system have been shown to promote gut health by increasing the microbial balance in the gut. However, the bioavailability of such administered probiotics remains a major concern. These probiotics are protected through microencapsulation techniques, which encapsulate them in small capsules. Several nanoparticles with varied dimensions, forms, surfaces and composites have recently been investigated for probiotic microencapsulation. This has been used for various therapeutic applications, such as drug delivery. This review gives an insight on various materials and strategies used for probiotic encapsulation.\\n\\nThe main aim of this review is to give a perception of the different types of methods of probiotic encapsulation.\\n\\nThis review implies the significance of probiotics and subsequent active release in the gastrointestinal system. Different sections of this review paper, on the other hand, may offer up new opportunities for comprehensive research in the field of microencapsulation for boosting probiotic viability and also talks about the various encapsulating materials that has been employed.\\n\\nThis review emphasizes more perceptions about the ongoing and imminent techniques for encapsulating probiotics.\\n\\n\",\"PeriodicalId\":8297,\"journal\":{\"name\":\"Archives of materials science and engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of materials science and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0016.0978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of materials science and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0016.0978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

纳米技术是高度发展的研究领域之一,在医疗保健部门的各个领域具有巨大的潜力。纳米技术的出现在于它作为靶向药物输送系统的能力。生物纳米技术这一新分支的引入进一步扩大了范围,特别是在各种疾病的诊断和治疗方面。益生菌是一种具有多种有益特性的天然来源,近年来得到了积极的研究。益生菌进入消化系统已被证明可以通过增加肠道微生物平衡来促进肠道健康。然而,这种给药益生菌的生物利用度仍然是一个主要问题。这些益生菌通过微胶囊技术得到保护,微胶囊技术将益生菌封装在小胶囊中。最近研究了几种不同尺寸、形状、表面和复合材料的纳米颗粒用于益生菌微胶囊化。这已被用于各种治疗应用,如药物输送。本文综述了用于益生菌封装的各种材料和策略。本综述的主要目的是对不同类型的益生菌封装方法进行概述。这一综述暗示了益生菌及其在胃肠道系统中的活性释放的重要性。另一方面,本文的不同部分可能为微胶囊化领域的综合研究提供新的机会,以提高益生菌的活力,并讨论了各种已采用的胶囊化材料。这篇综述强调了对正在进行和即将到来的益生菌封装技术的更多认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An epitome on encapsulation of probiotics
Nanotechnology is one of the highly evolving fields of research having immense potential in various fields of healthcare sectors. The very advent of nanotechnology lies in its ability to serve as a targeted drug delivery system. The introduction of a new branch namely bionanotechnology has further expanded the scope, especially in the diagnostics and treatment of various diseases. Probiotics being a natural source with a plethora of beneficial properties have been investigated actively in recent days. Probiotics administered into the digestive system have been shown to promote gut health by increasing the microbial balance in the gut. However, the bioavailability of such administered probiotics remains a major concern. These probiotics are protected through microencapsulation techniques, which encapsulate them in small capsules. Several nanoparticles with varied dimensions, forms, surfaces and composites have recently been investigated for probiotic microencapsulation. This has been used for various therapeutic applications, such as drug delivery. This review gives an insight on various materials and strategies used for probiotic encapsulation. The main aim of this review is to give a perception of the different types of methods of probiotic encapsulation. This review implies the significance of probiotics and subsequent active release in the gastrointestinal system. Different sections of this review paper, on the other hand, may offer up new opportunities for comprehensive research in the field of microencapsulation for boosting probiotic viability and also talks about the various encapsulating materials that has been employed. This review emphasizes more perceptions about the ongoing and imminent techniques for encapsulating probiotics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of materials science and engineering
Archives of materials science and engineering Materials Science-Materials Science (all)
CiteScore
2.90
自引率
0.00%
发文量
15
期刊最新文献
Heat transfer improvement using additive manufacturing technologies: a review Influence of manganese content on the microstructure and properties of AlSi10MnMg(Fe) alloy for die castings An experimental and theoretical piezoelectric energy harvesting from a simply supported beam with moving mass Details Matter in Structure-based Drug Design. Investigation of the effect of polymer concentration in fracturing fluid on crack size and permeability during hydraulic fracturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1