一种新型的预稀释旋流射流扩散器,用于增强出水混合:流体动力学和稀释性能

IF 2.4 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Journal of Hydro-environment Research Pub Date : 2022-11-01 DOI:10.1016/j.jher.2022.08.002
Xinzai Peng , Yiying He , Yijun Zhao , Wenming Zhang
{"title":"一种新型的预稀释旋流射流扩散器,用于增强出水混合:流体动力学和稀释性能","authors":"Xinzai Peng ,&nbsp;Yiying He ,&nbsp;Yijun Zhao ,&nbsp;Wenming Zhang","doi":"10.1016/j.jher.2022.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>Diffusers are widely-used to quickly dilute effluents in receiving water bodies. This study proposed a novel diffuser that pre-mixes effluent with ambient water before discharging and that uses the swirling jet to further enhance near-field dilution. The nozzle of the diffuser was examined in two ambient flow conditions: co-flow and counter-flow that are commonly-met in the environment such as oceans due to tidal effect. Physical experiments were first conducted in co-flow on its dilution performance and hydrodynamics, using heated water as the effluent. A 3-D CFD model was developed and calibrated the co-flow scenarios, and then used to investigate the diffuser in counter-flow. The results showed that the nozzle can effectively reduce the maximum temperature rise of the effluent by about 50 % before discharging. The swirling jet from the outlet has a larger shear area, half-width and entrainment rate, enabling the effluent to be rapidly diluted to a minimum of around 10 times at <em>x/D</em> = 6 in co-flow, whereas the dilution for conventional nozzles is about 1 because of the potential core. The flow amplification ratio (<em>α</em>) decreases gradually with increasing velocity ratio in co-flow but increases with increasing velocity ratio in counter-flow. The counter-flow reduces the water drawn into the device; however, the pre-dilution effect at the outlet remains stable. The near-field dilution in counter-flow was significantly enhanced than that in co-flow. Environmental regulations at outfalls and mixing zones can be more easily met using this novel diffuser.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"45 ","pages":"Pages 1-14"},"PeriodicalIF":2.4000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel pre-dilution, swirling jet diffuser to enhance effluent mixing: Hydrodynamics and dilution performance\",\"authors\":\"Xinzai Peng ,&nbsp;Yiying He ,&nbsp;Yijun Zhao ,&nbsp;Wenming Zhang\",\"doi\":\"10.1016/j.jher.2022.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diffusers are widely-used to quickly dilute effluents in receiving water bodies. This study proposed a novel diffuser that pre-mixes effluent with ambient water before discharging and that uses the swirling jet to further enhance near-field dilution. The nozzle of the diffuser was examined in two ambient flow conditions: co-flow and counter-flow that are commonly-met in the environment such as oceans due to tidal effect. Physical experiments were first conducted in co-flow on its dilution performance and hydrodynamics, using heated water as the effluent. A 3-D CFD model was developed and calibrated the co-flow scenarios, and then used to investigate the diffuser in counter-flow. The results showed that the nozzle can effectively reduce the maximum temperature rise of the effluent by about 50 % before discharging. The swirling jet from the outlet has a larger shear area, half-width and entrainment rate, enabling the effluent to be rapidly diluted to a minimum of around 10 times at <em>x/D</em> = 6 in co-flow, whereas the dilution for conventional nozzles is about 1 because of the potential core. The flow amplification ratio (<em>α</em>) decreases gradually with increasing velocity ratio in co-flow but increases with increasing velocity ratio in counter-flow. The counter-flow reduces the water drawn into the device; however, the pre-dilution effect at the outlet remains stable. The near-field dilution in counter-flow was significantly enhanced than that in co-flow. Environmental regulations at outfalls and mixing zones can be more easily met using this novel diffuser.</p></div>\",\"PeriodicalId\":49303,\"journal\":{\"name\":\"Journal of Hydro-environment Research\",\"volume\":\"45 \",\"pages\":\"Pages 1-14\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydro-environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570644322000491\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570644322000491","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

扩散器被广泛用于快速稀释接收水体中的污水。本研究提出了一种新型扩散器,该扩散器在排放前将污水与环境水预混合,并利用旋流射流进一步增强近场稀释。对扩散器喷嘴进行了共流和逆流两种环境流动条件下的测试,这两种流动条件在海洋等环境中由于潮汐效应而常见。首先在共流条件下,以热水为流出物,对其稀释性能和流体力学特性进行了物理实验。建立了三维CFD模型,对共流场景进行了标定,并应用该模型对逆流中的扩压器进行了研究。结果表明,该喷嘴可有效降低排放前出水的最高温升约50%。出口的旋流射流具有更大的剪切面积、半宽和夹带速率,在x/D = 6的共流条件下,出水可以被快速稀释到至少10倍左右,而传统喷嘴由于潜在核心的影响,稀释率约为1。流动放大比(α)在共流中随流速比的增大而逐渐减小,在逆流中随流速比的增大而增大。逆流减少了进入装置的水;但在出口处的预稀释效果保持稳定。逆流时的近场稀释比共流时明显增强。使用这种新型扩散器可以更容易地满足出口和混合区的环境要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel pre-dilution, swirling jet diffuser to enhance effluent mixing: Hydrodynamics and dilution performance

Diffusers are widely-used to quickly dilute effluents in receiving water bodies. This study proposed a novel diffuser that pre-mixes effluent with ambient water before discharging and that uses the swirling jet to further enhance near-field dilution. The nozzle of the diffuser was examined in two ambient flow conditions: co-flow and counter-flow that are commonly-met in the environment such as oceans due to tidal effect. Physical experiments were first conducted in co-flow on its dilution performance and hydrodynamics, using heated water as the effluent. A 3-D CFD model was developed and calibrated the co-flow scenarios, and then used to investigate the diffuser in counter-flow. The results showed that the nozzle can effectively reduce the maximum temperature rise of the effluent by about 50 % before discharging. The swirling jet from the outlet has a larger shear area, half-width and entrainment rate, enabling the effluent to be rapidly diluted to a minimum of around 10 times at x/D = 6 in co-flow, whereas the dilution for conventional nozzles is about 1 because of the potential core. The flow amplification ratio (α) decreases gradually with increasing velocity ratio in co-flow but increases with increasing velocity ratio in counter-flow. The counter-flow reduces the water drawn into the device; however, the pre-dilution effect at the outlet remains stable. The near-field dilution in counter-flow was significantly enhanced than that in co-flow. Environmental regulations at outfalls and mixing zones can be more easily met using this novel diffuser.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydro-environment Research
Journal of Hydro-environment Research ENGINEERING, CIVIL-ENVIRONMENTAL SCIENCES
CiteScore
5.80
自引率
0.00%
发文量
34
审稿时长
98 days
期刊介绍: The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers. Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.
期刊最新文献
Effect of submergence of sacrificial piles on local scour reduction at a bridge pier under U-type debris jam conditions Drag coefficients and water surface profiles in channels with arrays of linear rigid emergent vegetation Assessment of the impact of greenhouse rainwater harvesting managed aquifer recharge on the groundwater system in the southern Jeju Island, South Korea: Implication from a numerical modeling approach Real-time prediction of the week-ahead flood index using hybrid deep learning algorithms with synoptic climate mode indices Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1