MR传感器综述——三层TMR传感器的设计和特性评估

IF 1.4 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Current Nanoscience Pub Date : 2023-05-11 DOI:10.2174/1573413719666230511145554
D. Subbulekshmi, S. Gayathri
{"title":"MR传感器综述——三层TMR传感器的设计和特性评估","authors":"D. Subbulekshmi, S. Gayathri","doi":"10.2174/1573413719666230511145554","DOIUrl":null,"url":null,"abstract":"\n\nThe reliability and efficacy of sensor-based automated systems have improved due to the proliferation of electric vehicles, renewable sources, and integrated systems in power industries extensively. This has been accomplished by increasing the power density and decreasing the volume of the system.\n\n\n\nMathematical estimation and comparative analysis of the physical factors result in massive usage of operational matrices measured using sensors. Magnetic field sensors, used in industries and biomedical applications, have a high level of precision in the evaluation of measurements. In order to extract the measured parameters such as sensitivity, accuracy, operating cost, the linear range of operation, and power utilisation, these sensors adhere to the physical constraints during their nominal working conditions. The characteristics of the aforementioned sensors are enumerated in detail in this article.\n\n\n\nThis objective is highly focused on providing a comprehensive overview of classification and the properties of Hall-Effect, anisotropic magnetoresistive (AMR), giant magnetoresistive (GMR), and tunnelling magnetoresistive (TMR) sensors. The dissertation on its properties concludes that TMR is more reliable and sensitive in variable operating conditions.\n\n\n\nThe methods for selecting the sensors for an application are confined to voltage fluctuations and sensitivity. A three-layered TMR sensor with two magnetic layers and an insulator in between is proposed as a significant advancement compared to the literature. The micromagnetic simulation is carried out at room temperature for a three-layered TMR made up of neodymium alloy, magnesium oxide, and cobalt platinum alloy.\n\n\n\nBased on the studies executed, it is determined that TMR is more sensitive than both conventional and MR sensors. The proposed schematic claims that the higher free layer thickness offers maximum sensitivity with 77% negative magnetoresistance. The reduced coercivity of 1.9Oe is achieved in this combination at a specified temperature range.\n","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extensive review of MR sensors with design and characteristic evaluation of Three-Layered TMR sensor\",\"authors\":\"D. Subbulekshmi, S. Gayathri\",\"doi\":\"10.2174/1573413719666230511145554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nThe reliability and efficacy of sensor-based automated systems have improved due to the proliferation of electric vehicles, renewable sources, and integrated systems in power industries extensively. This has been accomplished by increasing the power density and decreasing the volume of the system.\\n\\n\\n\\nMathematical estimation and comparative analysis of the physical factors result in massive usage of operational matrices measured using sensors. Magnetic field sensors, used in industries and biomedical applications, have a high level of precision in the evaluation of measurements. In order to extract the measured parameters such as sensitivity, accuracy, operating cost, the linear range of operation, and power utilisation, these sensors adhere to the physical constraints during their nominal working conditions. The characteristics of the aforementioned sensors are enumerated in detail in this article.\\n\\n\\n\\nThis objective is highly focused on providing a comprehensive overview of classification and the properties of Hall-Effect, anisotropic magnetoresistive (AMR), giant magnetoresistive (GMR), and tunnelling magnetoresistive (TMR) sensors. The dissertation on its properties concludes that TMR is more reliable and sensitive in variable operating conditions.\\n\\n\\n\\nThe methods for selecting the sensors for an application are confined to voltage fluctuations and sensitivity. A three-layered TMR sensor with two magnetic layers and an insulator in between is proposed as a significant advancement compared to the literature. The micromagnetic simulation is carried out at room temperature for a three-layered TMR made up of neodymium alloy, magnesium oxide, and cobalt platinum alloy.\\n\\n\\n\\nBased on the studies executed, it is determined that TMR is more sensitive than both conventional and MR sensors. The proposed schematic claims that the higher free layer thickness offers maximum sensitivity with 77% negative magnetoresistance. The reduced coercivity of 1.9Oe is achieved in this combination at a specified temperature range.\\n\",\"PeriodicalId\":10827,\"journal\":{\"name\":\"Current Nanoscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Nanoscience\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2174/1573413719666230511145554\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nanoscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/1573413719666230511145554","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于电动汽车、可再生能源和集成系统在电力工业中的广泛应用,基于传感器的自动化系统的可靠性和效率得到了提高。这是通过提高功率密度和减小系统体积来实现的。物理因素的数学估计和比较分析导致大量使用使用传感器测量的操作矩阵。用于工业和生物医学应用的磁场传感器在评估测量值方面具有很高的精度。为了提取测量参数,如灵敏度、精度、运行成本、线性操作范围和功率利用率,这些传感器在其标称工作条件下遵守物理约束。本文详细列举了上述传感器的特性。本文重点介绍了霍尔效应、各向异性磁阻(AMR)、巨磁阻(GMR)和隧道磁阻(TMR)传感器的分类和性能。通过对其特性的研究,得出了TMR在变工况下更可靠、更灵敏的结论。为某一应用选择传感器的方法仅限于电压波动和灵敏度。与文献相比,提出了具有两个磁层和绝缘体的三层TMR传感器,这是一项重大进步。在室温下对由钕合金、氧化镁和钴铂合金组成的三层TMR进行了微磁模拟。根据所执行的研究,确定TMR比传统和MR传感器更敏感。所提出的原理图表明,较高的自由层厚度提供了77%负磁阻的最大灵敏度。在特定的温度范围内,这种组合的矫顽力降低了1.9Oe。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An extensive review of MR sensors with design and characteristic evaluation of Three-Layered TMR sensor
The reliability and efficacy of sensor-based automated systems have improved due to the proliferation of electric vehicles, renewable sources, and integrated systems in power industries extensively. This has been accomplished by increasing the power density and decreasing the volume of the system. Mathematical estimation and comparative analysis of the physical factors result in massive usage of operational matrices measured using sensors. Magnetic field sensors, used in industries and biomedical applications, have a high level of precision in the evaluation of measurements. In order to extract the measured parameters such as sensitivity, accuracy, operating cost, the linear range of operation, and power utilisation, these sensors adhere to the physical constraints during their nominal working conditions. The characteristics of the aforementioned sensors are enumerated in detail in this article. This objective is highly focused on providing a comprehensive overview of classification and the properties of Hall-Effect, anisotropic magnetoresistive (AMR), giant magnetoresistive (GMR), and tunnelling magnetoresistive (TMR) sensors. The dissertation on its properties concludes that TMR is more reliable and sensitive in variable operating conditions. The methods for selecting the sensors for an application are confined to voltage fluctuations and sensitivity. A three-layered TMR sensor with two magnetic layers and an insulator in between is proposed as a significant advancement compared to the literature. The micromagnetic simulation is carried out at room temperature for a three-layered TMR made up of neodymium alloy, magnesium oxide, and cobalt platinum alloy. Based on the studies executed, it is determined that TMR is more sensitive than both conventional and MR sensors. The proposed schematic claims that the higher free layer thickness offers maximum sensitivity with 77% negative magnetoresistance. The reduced coercivity of 1.9Oe is achieved in this combination at a specified temperature range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Nanoscience
Current Nanoscience 工程技术-材料科学:综合
CiteScore
3.50
自引率
6.70%
发文量
83
审稿时长
4.4 months
期刊介绍: Current Nanoscience publishes (a) Authoritative/Mini Reviews, and (b) Original Research and Highlights written by experts covering the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano-structures, nano-bubbles, nano-droplets and nanofluids. Applications of nanoscience in physics, material science, chemistry, synthesis, environmental science, electronics, biomedical nanotechnology, biomedical engineering, biotechnology, medicine and pharmaceuticals are also covered. The journal is essential to all researches involved in nanoscience and its applied and fundamental areas of science, chemistry, physics, material science, engineering and medicine. Current Nanoscience also welcomes submissions on the following topics of Nanoscience and Nanotechnology: Nanoelectronics and photonics Advanced Nanomaterials Nanofabrication and measurement Nanobiotechnology and nanomedicine Nanotechnology for energy Sensors and actuator Computational nanoscience and technology.
期刊最新文献
Fabrication of Ti/Zr-SnO2/PbO2-Nd Electrode for Efficient Electrocatalytic Degradation of Alizarine Yellow R Recent Advances of the Ultimate Microbial Influenced Corrosion (MIC): A Review A Comprehensive Review on Co-Crystals: Transforming Drug Delivery with Enhanced Solubility and Bioavailability Deposition of TiO2/Polymethylene Biguanide on Stainless Steel Wire for the Enhancement of Corrosion Resistance and Stability Synthesis of Silver Nanoparticles Using Haplophyllum robustum Bge. Extract: Antibacterial, Antifungal, and Scolicidal activity against Echinococcus granulosus Protoscolices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1