{"title":"类器官模型的工程共现","authors":"I. Vasić, T. McDevitt","doi":"10.1088/2516-1091/abe41e","DOIUrl":null,"url":null,"abstract":"Pluripotent stem cell-derived organoids provide in vitro models of development and disease that can be used for a wide range of biomedical applications, including high-throughput screens or regenerative medicine. The ability of stem cells to self-renew and self-organize in three dimensions is the basis for creating highly structured multicellular organoid models. However, progress in clinical translation of organoid technologies has been stymied by the stochastic nature of stem cell differentiation within organoids, which leads to inconsistent cell type maturity, tissue function, reproducibility, and control over macroscale structure and phenotype(s). Advances in our understanding of developmental biology and the mechanisms which regulate symmetry breaking and pattern formation in the embryo have led to new approaches for engineering cooperative emergence (co-emergence) in organoid models to address these challenges.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2021-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering co-emergence in organoid models\",\"authors\":\"I. Vasić, T. McDevitt\",\"doi\":\"10.1088/2516-1091/abe41e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pluripotent stem cell-derived organoids provide in vitro models of development and disease that can be used for a wide range of biomedical applications, including high-throughput screens or regenerative medicine. The ability of stem cells to self-renew and self-organize in three dimensions is the basis for creating highly structured multicellular organoid models. However, progress in clinical translation of organoid technologies has been stymied by the stochastic nature of stem cell differentiation within organoids, which leads to inconsistent cell type maturity, tissue function, reproducibility, and control over macroscale structure and phenotype(s). Advances in our understanding of developmental biology and the mechanisms which regulate symmetry breaking and pattern formation in the embryo have led to new approaches for engineering cooperative emergence (co-emergence) in organoid models to address these challenges.\",\"PeriodicalId\":74582,\"journal\":{\"name\":\"Progress in biomedical engineering (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2021-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in biomedical engineering (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1091/abe41e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/abe41e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Pluripotent stem cell-derived organoids provide in vitro models of development and disease that can be used for a wide range of biomedical applications, including high-throughput screens or regenerative medicine. The ability of stem cells to self-renew and self-organize in three dimensions is the basis for creating highly structured multicellular organoid models. However, progress in clinical translation of organoid technologies has been stymied by the stochastic nature of stem cell differentiation within organoids, which leads to inconsistent cell type maturity, tissue function, reproducibility, and control over macroscale structure and phenotype(s). Advances in our understanding of developmental biology and the mechanisms which regulate symmetry breaking and pattern formation in the embryo have led to new approaches for engineering cooperative emergence (co-emergence) in organoid models to address these challenges.