J. Cui, Kang Guan, Pinggen Rao, Cheng Peng, Q. Zeng, Jiantao Liu, Shuyan Yu
{"title":"凹槽和缺口尖端角度对SEVNB法测试断裂韧性的影响:模型和实验验证","authors":"J. Cui, Kang Guan, Pinggen Rao, Cheng Peng, Q. Zeng, Jiantao Liu, Shuyan Yu","doi":"10.1080/21870764.2022.2156676","DOIUrl":null,"url":null,"abstract":"ABSTRACT The single-edged V-notch beam (SEVNB) method is considered as an effective method for evaluating the fracture toughness values of brittle materials. In this method, it is assumed that the V-notch is a natural crack. However, this assumption may cause an overestimation of the fracture toughness due to the “notch passivation effect”. To investigate the effects of the V-notch and groove tip angles on the fracture toughness testing of ceramic materials, three typical models were established in this work. The stress intensity factors of these models were calculated using a J-integral based on the linear finite element method (LFEM). The results indicated that the measured fracture toughness values could be overestimated by 0.5%- 13.7% when the angle of the V-notch tip increased from 10° to 60°. Increasing the angle formed by the V-notch and groove from 10° to 60°, fracture toughness was overevaluated by about 0% – 2.0%. When the angle formed by the V-notch and groove increased to 120°, the fracture toughness was overevaluated by about 31%. Finally, two equations were fitted to assess the angles effects on fracture toughness, and the results have been validated by experiments. An important reference for the SEVNB method can be found in this work.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":"11 1","pages":"39 - 52"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of groove and notch tip angles on testing fracture toughness by SEVNB method: models and experimental validation\",\"authors\":\"J. Cui, Kang Guan, Pinggen Rao, Cheng Peng, Q. Zeng, Jiantao Liu, Shuyan Yu\",\"doi\":\"10.1080/21870764.2022.2156676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The single-edged V-notch beam (SEVNB) method is considered as an effective method for evaluating the fracture toughness values of brittle materials. In this method, it is assumed that the V-notch is a natural crack. However, this assumption may cause an overestimation of the fracture toughness due to the “notch passivation effect”. To investigate the effects of the V-notch and groove tip angles on the fracture toughness testing of ceramic materials, three typical models were established in this work. The stress intensity factors of these models were calculated using a J-integral based on the linear finite element method (LFEM). The results indicated that the measured fracture toughness values could be overestimated by 0.5%- 13.7% when the angle of the V-notch tip increased from 10° to 60°. Increasing the angle formed by the V-notch and groove from 10° to 60°, fracture toughness was overevaluated by about 0% – 2.0%. When the angle formed by the V-notch and groove increased to 120°, the fracture toughness was overevaluated by about 31%. Finally, two equations were fitted to assess the angles effects on fracture toughness, and the results have been validated by experiments. An important reference for the SEVNB method can be found in this work.\",\"PeriodicalId\":15130,\"journal\":{\"name\":\"Journal of Asian Ceramic Societies\",\"volume\":\"11 1\",\"pages\":\"39 - 52\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Asian Ceramic Societies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/21870764.2022.2156676\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Ceramic Societies","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21870764.2022.2156676","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
The effect of groove and notch tip angles on testing fracture toughness by SEVNB method: models and experimental validation
ABSTRACT The single-edged V-notch beam (SEVNB) method is considered as an effective method for evaluating the fracture toughness values of brittle materials. In this method, it is assumed that the V-notch is a natural crack. However, this assumption may cause an overestimation of the fracture toughness due to the “notch passivation effect”. To investigate the effects of the V-notch and groove tip angles on the fracture toughness testing of ceramic materials, three typical models were established in this work. The stress intensity factors of these models were calculated using a J-integral based on the linear finite element method (LFEM). The results indicated that the measured fracture toughness values could be overestimated by 0.5%- 13.7% when the angle of the V-notch tip increased from 10° to 60°. Increasing the angle formed by the V-notch and groove from 10° to 60°, fracture toughness was overevaluated by about 0% – 2.0%. When the angle formed by the V-notch and groove increased to 120°, the fracture toughness was overevaluated by about 31%. Finally, two equations were fitted to assess the angles effects on fracture toughness, and the results have been validated by experiments. An important reference for the SEVNB method can be found in this work.
期刊介绍:
The Journal of Asian Ceramic Societies is an open access journal publishing papers documenting original research and reviews covering all aspects of science and technology of Ceramics, Glasses, Composites, and related materials. These papers include experimental and theoretical aspects emphasizing basic science, processing, microstructure, characteristics, and functionality of ceramic materials. The journal publishes high quality full papers, letters for rapid publication, and in-depth review articles. All papers are subjected to a fair peer-review process.