糖棕榈纤维灰分增强LM26铝基复合材料的微观结构和力学性能研究

I. Aliyu, S. M. Sapuan, E. S. Zainudin, Mohd Yusoff Mohamed Zuhri, R. Yahaya
{"title":"糖棕榈纤维灰分增强LM26铝基复合材料的微观结构和力学性能研究","authors":"I. Aliyu, S. M. Sapuan, E. S. Zainudin, Mohd Yusoff Mohamed Zuhri, R. Yahaya","doi":"10.14416/j.asep.2023.02.010","DOIUrl":null,"url":null,"abstract":"Aluminium alloy of grade LM26 was used as a matrix and sugar palm fiber ash (SPFA) as reinforcement to investigate its microstructural and mechanical characteristics. Stir casting, a cost-effective method of casting was utilized to fabricate the composites, by altering SPFA from 0 to 10 wt% in 2 wt% increments in an LM26 Al-alloy matrix. The microstructural analysis and phase identification were identified with Scanning Electron Microscopy (SEM) attached to Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD), respectively. The composites were tested for density, hardness, tensile strength, compression strength, and impact energy according to ASTM. Microstructural images revealed a homogeneous distribution of SPFA in the LM26 Al-alloy matrix. The phases identified in the composites were α-Al, hard SiO2, Mg2Si, and Al5FeSi. The addition of SPFA decreased the composite density and impact energy by 3.85% and 46.68%, respectively. The compression strength and tensile strength of the composites increased by 23.73% and 27.83%, respectively, at an 8 wt% addition of SPFA. However, further addition of up to 10 wt% SPFA showed a decreasing trend in compression and tensile strength. The hardness of the composites increased by 60.80% after a 10 wt% addition of SPFA. These findings showed that synthesized LM26 Al-SPFA composites could be used in the automotive industries for the fabrication of pistons, connecting rods, brake shoes, and other components due to their excellent mechanical characteristics.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on Microstructure and Mechanical Characteristics of Sugar Palm Fibre Ash Reinforced LM26 Al-Matrix Composites\",\"authors\":\"I. Aliyu, S. M. Sapuan, E. S. Zainudin, Mohd Yusoff Mohamed Zuhri, R. Yahaya\",\"doi\":\"10.14416/j.asep.2023.02.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aluminium alloy of grade LM26 was used as a matrix and sugar palm fiber ash (SPFA) as reinforcement to investigate its microstructural and mechanical characteristics. Stir casting, a cost-effective method of casting was utilized to fabricate the composites, by altering SPFA from 0 to 10 wt% in 2 wt% increments in an LM26 Al-alloy matrix. The microstructural analysis and phase identification were identified with Scanning Electron Microscopy (SEM) attached to Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD), respectively. The composites were tested for density, hardness, tensile strength, compression strength, and impact energy according to ASTM. Microstructural images revealed a homogeneous distribution of SPFA in the LM26 Al-alloy matrix. The phases identified in the composites were α-Al, hard SiO2, Mg2Si, and Al5FeSi. The addition of SPFA decreased the composite density and impact energy by 3.85% and 46.68%, respectively. The compression strength and tensile strength of the composites increased by 23.73% and 27.83%, respectively, at an 8 wt% addition of SPFA. However, further addition of up to 10 wt% SPFA showed a decreasing trend in compression and tensile strength. The hardness of the composites increased by 60.80% after a 10 wt% addition of SPFA. These findings showed that synthesized LM26 Al-SPFA composites could be used in the automotive industries for the fabrication of pistons, connecting rods, brake shoes, and other components due to their excellent mechanical characteristics.\",\"PeriodicalId\":8097,\"journal\":{\"name\":\"Applied Science and Engineering Progress\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Science and Engineering Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14416/j.asep.2023.02.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Science and Engineering Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14416/j.asep.2023.02.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

以LM26级铝合金为基体,糖棕榈纤维灰(SPFA)为增强材料,研究了其微观结构和力学性能。搅拌铸造是一种成本效益高的铸造方法,通过在LM26铝合金基体中以2 wt%的增量将SPFA从0改变到10 wt%来制备复合材料。微观结构分析和相鉴定分别用附在能谱仪(EDS)和X射线衍射仪(XRD)上的扫描电子显微镜(SEM)进行鉴定。根据ASTM测试复合材料的密度、硬度、拉伸强度、压缩强度和冲击能量。显微结构图像显示,在LM26铝合金基体中,SPFA分布均匀。复合材料中鉴定的相为α-Al、硬质SiO2、Mg2Si和Al5FeSi。SPFA的加入使复合材料的密度和冲击能量分别降低了3.85%和46.68%。当添加8wt%的SPFA时,复合材料的抗压强度和抗拉强度分别提高了23.73%和27.83%。然而,进一步添加高达10wt%的SPFA显示出压缩和拉伸强度下降的趋势。添加10wt%的SPFA后,复合材料的硬度提高了60.80%。这些发现表明,合成的LM26 Al-SPFA复合材料由于其优异的机械特性,可用于汽车工业中制造活塞、连杆、制动蹄和其他部件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation on Microstructure and Mechanical Characteristics of Sugar Palm Fibre Ash Reinforced LM26 Al-Matrix Composites
Aluminium alloy of grade LM26 was used as a matrix and sugar palm fiber ash (SPFA) as reinforcement to investigate its microstructural and mechanical characteristics. Stir casting, a cost-effective method of casting was utilized to fabricate the composites, by altering SPFA from 0 to 10 wt% in 2 wt% increments in an LM26 Al-alloy matrix. The microstructural analysis and phase identification were identified with Scanning Electron Microscopy (SEM) attached to Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD), respectively. The composites were tested for density, hardness, tensile strength, compression strength, and impact energy according to ASTM. Microstructural images revealed a homogeneous distribution of SPFA in the LM26 Al-alloy matrix. The phases identified in the composites were α-Al, hard SiO2, Mg2Si, and Al5FeSi. The addition of SPFA decreased the composite density and impact energy by 3.85% and 46.68%, respectively. The compression strength and tensile strength of the composites increased by 23.73% and 27.83%, respectively, at an 8 wt% addition of SPFA. However, further addition of up to 10 wt% SPFA showed a decreasing trend in compression and tensile strength. The hardness of the composites increased by 60.80% after a 10 wt% addition of SPFA. These findings showed that synthesized LM26 Al-SPFA composites could be used in the automotive industries for the fabrication of pistons, connecting rods, brake shoes, and other components due to their excellent mechanical characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Science and Engineering Progress
Applied Science and Engineering Progress Engineering-Engineering (all)
CiteScore
4.70
自引率
0.00%
发文量
56
期刊最新文献
Nanostructured Composites: Modelling for Tailored Industrial Application Facile Synthesis of Hybrid-Polyoxometalates Nanocomposite for Degradation of Cationic and Anionic Dyes in Water Treatment Characterization of Polyvinylpyrrolidone-2-Acrylamide-2-Methlypropansulphonic Acid Based Polymer as a Corrosion Inhibitor for Copper and Brass in Hydrochloric Acid Conditional Optimization on the Photocatalytic Degradation Removal Efficiency of Formaldehyde using TiO2 – Nylon 6 Electrospun Composite Membrane Multicomponent Equilibrium Isotherms and Kinetics Study of Heavy Metals Removal from Aqueous Solutions Using Electrocoagulation Combined with Mordenite Zeolite and Ultrasonication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1