{"title":"CO2/H2S环境下管线顶部腐蚀研究的一种新方法","authors":"J. Neshati, M. Saremi, G. Mashhadi","doi":"10.1080/1478422X.2023.2250156","DOIUrl":null,"url":null,"abstract":"ABSTRACT The most common way to control Top of line Corrosion (TLC) is to use corrosion inhibitors. A setup was designed to simulate the TLC conditions and measure the corrosion rate in the presence of an Imidazoline-based commercial inhibitor. The base solution was at temperature 70°C and the samples X65 steel were at 5°C and 20°C. Experiments were carried out in atmospheric conditions by purging a mixture of CO2 and H2S gases in proportions of 21% and 79%, respectively. An increase in the TLC rate was measured when the sample temperature increased. The difference between the average corrosion rate measured by weight loss and the instantaneous resulting from Tafel and linear polarisation resistance was significant in this study. Results showed that the surface temperature of the sample has a significant effect on TLC. Although the condensation rate on X65 steel sample with surface temperature of 5°C was about ten times more at 20°C, the corrosion rate was more at higher temperatures.","PeriodicalId":10711,"journal":{"name":"Corrosion Engineering, Science and Technology","volume":"58 1","pages":"723 - 733"},"PeriodicalIF":1.5000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new approach in top-of-line corrosion studies in CO2/H2S environment\",\"authors\":\"J. Neshati, M. Saremi, G. Mashhadi\",\"doi\":\"10.1080/1478422X.2023.2250156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The most common way to control Top of line Corrosion (TLC) is to use corrosion inhibitors. A setup was designed to simulate the TLC conditions and measure the corrosion rate in the presence of an Imidazoline-based commercial inhibitor. The base solution was at temperature 70°C and the samples X65 steel were at 5°C and 20°C. Experiments were carried out in atmospheric conditions by purging a mixture of CO2 and H2S gases in proportions of 21% and 79%, respectively. An increase in the TLC rate was measured when the sample temperature increased. The difference between the average corrosion rate measured by weight loss and the instantaneous resulting from Tafel and linear polarisation resistance was significant in this study. Results showed that the surface temperature of the sample has a significant effect on TLC. Although the condensation rate on X65 steel sample with surface temperature of 5°C was about ten times more at 20°C, the corrosion rate was more at higher temperatures.\",\"PeriodicalId\":10711,\"journal\":{\"name\":\"Corrosion Engineering, Science and Technology\",\"volume\":\"58 1\",\"pages\":\"723 - 733\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Engineering, Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/1478422X.2023.2250156\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Engineering, Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/1478422X.2023.2250156","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A new approach in top-of-line corrosion studies in CO2/H2S environment
ABSTRACT The most common way to control Top of line Corrosion (TLC) is to use corrosion inhibitors. A setup was designed to simulate the TLC conditions and measure the corrosion rate in the presence of an Imidazoline-based commercial inhibitor. The base solution was at temperature 70°C and the samples X65 steel were at 5°C and 20°C. Experiments were carried out in atmospheric conditions by purging a mixture of CO2 and H2S gases in proportions of 21% and 79%, respectively. An increase in the TLC rate was measured when the sample temperature increased. The difference between the average corrosion rate measured by weight loss and the instantaneous resulting from Tafel and linear polarisation resistance was significant in this study. Results showed that the surface temperature of the sample has a significant effect on TLC. Although the condensation rate on X65 steel sample with surface temperature of 5°C was about ten times more at 20°C, the corrosion rate was more at higher temperatures.
期刊介绍:
Corrosion Engineering, Science and Technology provides broad international coverage of research and practice in corrosion processes and corrosion control. Peer-reviewed contributions address all aspects of corrosion engineering and corrosion science; there is strong emphasis on effective design and materials selection to combat corrosion and the journal carries failure case studies to further knowledge in these areas.