{"title":"面向在野外自动连接具有漏洞的物联网设备","authors":"Jinke Song, Shangfeng Wan, Minfei Huang, Ji-Qiang Liu, Limin Sun, Qiang Li","doi":"10.1145/3608951","DOIUrl":null,"url":null,"abstract":"With the increasing number of Internet of Things (IoT) devices connected to the internet, the industry and research community have become increasingly concerned about their security impact. Adversaries or hackers often exploit public security flaws to compromise IoT devices and launch cyber attacks. However, despite this growing concern, little effort has been made to investigate the detection of IoT devices and their underlying risks. To address this gap, this paper proposes to automatically establish relationships between IoT devices and their vulnerabilities in the wild. Specifically, we construct a deep neural network (DNN) to extract semantic information from IoT packets and generate fine-grained fingerprints of IoT devices. This enables us to annotate IoT devices in cyberspace, including their device type, vendor, and product information. We collect vulnerability reports from various security sources and extract IoT device information from these reports to automatically match vulnerabilities with the fingerprints of IoT devices. We implemented a prototype system and conducted extensive experiments to validate the effectiveness of our approach. The results show that our DNN model achieved a 98% precision rate and a 95% recall rate in IoT device fingerprinting. Furthermore, we collected and analyzed over 13,063 IoT-related vulnerability reports and our method automatically built 5,458 connections between IoT device fingerprints and their vulnerabilities. These findings shed light on the ongoing threat of cyber-attacks on IoT systems as both IoT devices and disclosed vulnerabilities are targets for malicious attackers.","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Automatically Connecting IoT Devices with Vulnerabilities in the Wild\",\"authors\":\"Jinke Song, Shangfeng Wan, Minfei Huang, Ji-Qiang Liu, Limin Sun, Qiang Li\",\"doi\":\"10.1145/3608951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing number of Internet of Things (IoT) devices connected to the internet, the industry and research community have become increasingly concerned about their security impact. Adversaries or hackers often exploit public security flaws to compromise IoT devices and launch cyber attacks. However, despite this growing concern, little effort has been made to investigate the detection of IoT devices and their underlying risks. To address this gap, this paper proposes to automatically establish relationships between IoT devices and their vulnerabilities in the wild. Specifically, we construct a deep neural network (DNN) to extract semantic information from IoT packets and generate fine-grained fingerprints of IoT devices. This enables us to annotate IoT devices in cyberspace, including their device type, vendor, and product information. We collect vulnerability reports from various security sources and extract IoT device information from these reports to automatically match vulnerabilities with the fingerprints of IoT devices. We implemented a prototype system and conducted extensive experiments to validate the effectiveness of our approach. The results show that our DNN model achieved a 98% precision rate and a 95% recall rate in IoT device fingerprinting. Furthermore, we collected and analyzed over 13,063 IoT-related vulnerability reports and our method automatically built 5,458 connections between IoT device fingerprints and their vulnerabilities. These findings shed light on the ongoing threat of cyber-attacks on IoT systems as both IoT devices and disclosed vulnerabilities are targets for malicious attackers.\",\"PeriodicalId\":50910,\"journal\":{\"name\":\"ACM Transactions on Sensor Networks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3608951\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3608951","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Towards Automatically Connecting IoT Devices with Vulnerabilities in the Wild
With the increasing number of Internet of Things (IoT) devices connected to the internet, the industry and research community have become increasingly concerned about their security impact. Adversaries or hackers often exploit public security flaws to compromise IoT devices and launch cyber attacks. However, despite this growing concern, little effort has been made to investigate the detection of IoT devices and their underlying risks. To address this gap, this paper proposes to automatically establish relationships between IoT devices and their vulnerabilities in the wild. Specifically, we construct a deep neural network (DNN) to extract semantic information from IoT packets and generate fine-grained fingerprints of IoT devices. This enables us to annotate IoT devices in cyberspace, including their device type, vendor, and product information. We collect vulnerability reports from various security sources and extract IoT device information from these reports to automatically match vulnerabilities with the fingerprints of IoT devices. We implemented a prototype system and conducted extensive experiments to validate the effectiveness of our approach. The results show that our DNN model achieved a 98% precision rate and a 95% recall rate in IoT device fingerprinting. Furthermore, we collected and analyzed over 13,063 IoT-related vulnerability reports and our method automatically built 5,458 connections between IoT device fingerprints and their vulnerabilities. These findings shed light on the ongoing threat of cyber-attacks on IoT systems as both IoT devices and disclosed vulnerabilities are targets for malicious attackers.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.