{"title":"一种新的基于增强LASSO的节能无线传感器网络压缩技术","authors":"K. Anitha, B. Jaison, M. Nalini, D. ShinyIrene","doi":"10.25728/ASSA.2020.20.1.803","DOIUrl":null,"url":null,"abstract":"The capability of transmission in Wireless sensor networks (WSN) is circumscribed due to the precincts in energy utilization, controlled resources of transmission devices and network components. Information compression is taken into account as the best option, because the major part of energy consumed is for transmission of information. Habitually Lossy compression is adopted, since WSN abides some error in the reconstructed signals subjected to some acceptable tolerance. Lasso based models have been ascertained their capability to effectually compress both multivariate and univariate data. Traditional Lasso considers l1-norm regularization for learning in multi-dimensional data sets and assumes sparsity as model parameters. Lasso prominence on sparsity and deal with the correlation between the data points. However, model sparsity may be constricting and not essentially the foremost applicable assumption in several problem domains. To eliminate this limitation, an enriched lasso (MLasso) is proposed for compression bearing in mind both sparsity and correlation. In specific the strategy can select data that are having strong features to reconstruct the data and are less correlated between each other. Furthermore, an efficient Alternating Direction Method of Multipliers (ADMM) is adopted to resolve the ensuing sparse non-convex optimization problem. Extensive experiments on diverse datasets provides the proof that MLasso outperforms other similar algorithms for signal compression. Thus the proposed method ensures less energy consumption, decreases power loss and improves the operational life and reliability of network components.","PeriodicalId":39095,"journal":{"name":"Advances in Systems Science and Applications","volume":"20 1","pages":"66-82"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Enriched LASSO Based Compression Technique for Energy Efficient Wireless Sensor Networks\",\"authors\":\"K. Anitha, B. Jaison, M. Nalini, D. ShinyIrene\",\"doi\":\"10.25728/ASSA.2020.20.1.803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The capability of transmission in Wireless sensor networks (WSN) is circumscribed due to the precincts in energy utilization, controlled resources of transmission devices and network components. Information compression is taken into account as the best option, because the major part of energy consumed is for transmission of information. Habitually Lossy compression is adopted, since WSN abides some error in the reconstructed signals subjected to some acceptable tolerance. Lasso based models have been ascertained their capability to effectually compress both multivariate and univariate data. Traditional Lasso considers l1-norm regularization for learning in multi-dimensional data sets and assumes sparsity as model parameters. Lasso prominence on sparsity and deal with the correlation between the data points. However, model sparsity may be constricting and not essentially the foremost applicable assumption in several problem domains. To eliminate this limitation, an enriched lasso (MLasso) is proposed for compression bearing in mind both sparsity and correlation. In specific the strategy can select data that are having strong features to reconstruct the data and are less correlated between each other. Furthermore, an efficient Alternating Direction Method of Multipliers (ADMM) is adopted to resolve the ensuing sparse non-convex optimization problem. Extensive experiments on diverse datasets provides the proof that MLasso outperforms other similar algorithms for signal compression. Thus the proposed method ensures less energy consumption, decreases power loss and improves the operational life and reliability of network components.\",\"PeriodicalId\":39095,\"journal\":{\"name\":\"Advances in Systems Science and Applications\",\"volume\":\"20 1\",\"pages\":\"66-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Systems Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25728/ASSA.2020.20.1.803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Systems Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25728/ASSA.2020.20.1.803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
A Novel Enriched LASSO Based Compression Technique for Energy Efficient Wireless Sensor Networks
The capability of transmission in Wireless sensor networks (WSN) is circumscribed due to the precincts in energy utilization, controlled resources of transmission devices and network components. Information compression is taken into account as the best option, because the major part of energy consumed is for transmission of information. Habitually Lossy compression is adopted, since WSN abides some error in the reconstructed signals subjected to some acceptable tolerance. Lasso based models have been ascertained their capability to effectually compress both multivariate and univariate data. Traditional Lasso considers l1-norm regularization for learning in multi-dimensional data sets and assumes sparsity as model parameters. Lasso prominence on sparsity and deal with the correlation between the data points. However, model sparsity may be constricting and not essentially the foremost applicable assumption in several problem domains. To eliminate this limitation, an enriched lasso (MLasso) is proposed for compression bearing in mind both sparsity and correlation. In specific the strategy can select data that are having strong features to reconstruct the data and are less correlated between each other. Furthermore, an efficient Alternating Direction Method of Multipliers (ADMM) is adopted to resolve the ensuing sparse non-convex optimization problem. Extensive experiments on diverse datasets provides the proof that MLasso outperforms other similar algorithms for signal compression. Thus the proposed method ensures less energy consumption, decreases power loss and improves the operational life and reliability of network components.
期刊介绍:
Advances in Systems Science and Applications (ASSA) is an international peer-reviewed open-source online academic journal. Its scope covers all major aspects of systems (and processes) analysis, modeling, simulation, and control, ranging from theoretical and methodological developments to a large variety of application areas. Survey articles and innovative results are also welcome. ASSA is aimed at the audience of scientists, engineers and researchers working in the framework of these problems. ASSA should be a platform on which researchers will be able to communicate and discuss both their specialized issues and interdisciplinary problems of systems analysis and its applications in science and industry, including data science, artificial intelligence, material science, manufacturing, transportation, power and energy, ecology, corporate management, public governance, finance, and many others.