交通空间参数:基于深度学习和遥感的多模式城市空间结构建模方法

IF 1.6 4区 工程技术 Q4 TRANSPORTATION Journal of Transport and Land Use Pub Date : 2021-07-05 DOI:10.5198/JTLU.2021.1855
Dorothee Stiller, M. Wurm, Thomas Stark, P. d’Angelo, Karsten Stebner, S. Dech, H. Taubenböck
{"title":"交通空间参数:基于深度学习和遥感的多模式城市空间结构建模方法","authors":"Dorothee Stiller, M. Wurm, Thomas Stark, P. d’Angelo, Karsten Stebner, S. Dech, H. Taubenböck","doi":"10.5198/JTLU.2021.1855","DOIUrl":null,"url":null,"abstract":"A significant increase in global urban population affects the efficiency of urban transportation systems. Remarkable urban growth rates are observed in developing or newly industrialized countries where researchers, planners, and authorities face scarcity of relevant official data or geo-data. In this study, we explore remote sensing and open geo-data as alternative sources to generate missing data for transportation models in urban planning and research. We propose a multi-modal approach capable of assessing three essential parameters of the urban spatial structure: buildings, land use, and intra-urban population distribution. Therefore, we first create a very high-resolution (VHR) 3D city model for estimating the building floors. Second, we add detailed land-use information retrieved from OpenStreetMap (OSM). Third, we test and evaluate five experiments to estimate population at a single building level. In our experimental set-up for the mega-city of Santiago de Chile, we find that the multi-modal approach allows generating missing data for transportation independently from official data for any area across the globe. Beyond that, we find the high-level 3D city model is the most accurate for determining population on small scales, and thus evaluate that the integration of land use is an inevitable step to obtain fine-scale intra-urban population distribution.","PeriodicalId":47271,"journal":{"name":"Journal of Transport and Land Use","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spatial parameters for transportation: A multi-modal approach for modelling the urban spatial structure using deep learning and remote sensing\",\"authors\":\"Dorothee Stiller, M. Wurm, Thomas Stark, P. d’Angelo, Karsten Stebner, S. Dech, H. Taubenböck\",\"doi\":\"10.5198/JTLU.2021.1855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A significant increase in global urban population affects the efficiency of urban transportation systems. Remarkable urban growth rates are observed in developing or newly industrialized countries where researchers, planners, and authorities face scarcity of relevant official data or geo-data. In this study, we explore remote sensing and open geo-data as alternative sources to generate missing data for transportation models in urban planning and research. We propose a multi-modal approach capable of assessing three essential parameters of the urban spatial structure: buildings, land use, and intra-urban population distribution. Therefore, we first create a very high-resolution (VHR) 3D city model for estimating the building floors. Second, we add detailed land-use information retrieved from OpenStreetMap (OSM). Third, we test and evaluate five experiments to estimate population at a single building level. In our experimental set-up for the mega-city of Santiago de Chile, we find that the multi-modal approach allows generating missing data for transportation independently from official data for any area across the globe. Beyond that, we find the high-level 3D city model is the most accurate for determining population on small scales, and thus evaluate that the integration of land use is an inevitable step to obtain fine-scale intra-urban population distribution.\",\"PeriodicalId\":47271,\"journal\":{\"name\":\"Journal of Transport and Land Use\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Transport and Land Use\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5198/JTLU.2021.1855\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Transport and Land Use","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5198/JTLU.2021.1855","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 5

摘要

全球城市人口的显著增长影响着城市交通系统的效率。在发展中国家或新兴工业化国家,研究人员、规划者和当局面临相关官方数据或地理数据匮乏的问题,可以观察到显著的城市增长率。在这项研究中,我们探索遥感和开放地理数据作为替代来源,为城市规划和研究中的交通模型生成缺失数据。我们提出了一种能够评估城市空间结构三个基本参数的多模式方法:建筑、土地利用和城市内部人口分布。因此,我们首先创建了一个非常高分辨率(VHR)的3D城市模型,用于估计建筑楼层。其次,我们添加了从OpenStreetMap(OSM)中检索到的详细土地使用信息。第三,我们测试和评估了五个实验,以估计单个建筑水平上的人口。在我们为智利特大城市圣地亚哥进行的实验中,我们发现,多模式方法可以独立于全球任何地区的官方数据生成缺失的交通数据。除此之外,我们发现高水平的三维城市模型对于小规模人口的确定是最准确的,因此评估土地利用的整合是获得精细规模城市内人口分布的必然步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial parameters for transportation: A multi-modal approach for modelling the urban spatial structure using deep learning and remote sensing
A significant increase in global urban population affects the efficiency of urban transportation systems. Remarkable urban growth rates are observed in developing or newly industrialized countries where researchers, planners, and authorities face scarcity of relevant official data or geo-data. In this study, we explore remote sensing and open geo-data as alternative sources to generate missing data for transportation models in urban planning and research. We propose a multi-modal approach capable of assessing three essential parameters of the urban spatial structure: buildings, land use, and intra-urban population distribution. Therefore, we first create a very high-resolution (VHR) 3D city model for estimating the building floors. Second, we add detailed land-use information retrieved from OpenStreetMap (OSM). Third, we test and evaluate five experiments to estimate population at a single building level. In our experimental set-up for the mega-city of Santiago de Chile, we find that the multi-modal approach allows generating missing data for transportation independently from official data for any area across the globe. Beyond that, we find the high-level 3D city model is the most accurate for determining population on small scales, and thus evaluate that the integration of land use is an inevitable step to obtain fine-scale intra-urban population distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
5.30%
发文量
34
审稿时长
30 weeks
期刊介绍: The Journal of Transport and Land Usepublishes original interdisciplinary papers on the interaction of transport and land use. Domains include: engineering, planning, modeling, behavior, economics, geography, regional science, sociology, architecture and design, network science, and complex systems. Papers reporting innovative methodologies, original data, and new empirical findings are especially encouraged.
期刊最新文献
Access-based land value appreciation for assessing project benefits Revealing social dimensions of urban mobility with big data: A timely dialogue Exploring practices for facilitating integrated strategic land use and transport planning in the Nordic countries Does rail transit access affect firm dynamics? Analysis of firm births and closures in Maryland, USA Incorporating diminishing returns to opportunities in access: Development of an open-source walkability index based on multi-activity accessibility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1