LB250:宫颈、乳腺和胶质母细胞瘤类器官筏培养的发展作为快速经济的离体人类癌症模型,用于临床前药物评估

Q3 Biochemistry, Genetics and Molecular Biology Tumor Biology Pub Date : 2021-07-01 DOI:10.1158/1538-7445.AM2021-LB250
N. Banerjee, Dianne W. Moore, Abhisek Gangrade, D. Buchsbaum, L. Nabors, T. Broker, L. Chow
{"title":"LB250:宫颈、乳腺和胶质母细胞瘤类器官筏培养的发展作为快速经济的离体人类癌症模型,用于临床前药物评估","authors":"N. Banerjee, Dianne W. Moore, Abhisek Gangrade, D. Buchsbaum, L. Nabors, T. Broker, L. Chow","doi":"10.1158/1538-7445.AM2021-LB250","DOIUrl":null,"url":null,"abstract":"Background: In the past few years, 3D organoid cultures of patient-derived tumors or patient-derived xenografts have gained significant attention as faster and more economical ex vivo alternatives to animal models for the pre-clinical evaluation of therapeutics. We reported previously that raft cultures of ex vivo epithelial warts, normal human epithelia from various anatomic sites, as well as cancer cell lines (cervical and melanoma) grown at the liquid:air interface recapitulate parental tissue phenotypes. Here we describe adaptation of the above technique to develop Organoid Raft Culture (ORC) of tumors of various origin and validation as preclinical models for drug evaluation. Methods: A stromal equivalent (SE) consisting of buffered rat-tail collagen and J2 mouse fibroblasts was prepared in 24-well tissue culture plates. Freshly harvested tumors from patients or patient-derived xenografts of cervical cancers were minced to Citation Format: Nilam Sanjib Banerjee, Dianne W. Moore, Abhisek Gangrade, Donald J. Buchsbaum, Luise Burt Nabors, Thomas R. Broker, Louise T. Chow. Development of organoid raft cultures of cervical, breast and glioblastoma tumors as quick economical ex vivo human cancer models for pre-clinical drug evaluation [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr LB250.","PeriodicalId":23364,"journal":{"name":"Tumor Biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstract LB250: Development of organoid raft cultures of cervical, breast and glioblastoma tumors as quick economical ex vivo human cancer models for pre-clinical drug evaluation\",\"authors\":\"N. Banerjee, Dianne W. Moore, Abhisek Gangrade, D. Buchsbaum, L. Nabors, T. Broker, L. Chow\",\"doi\":\"10.1158/1538-7445.AM2021-LB250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: In the past few years, 3D organoid cultures of patient-derived tumors or patient-derived xenografts have gained significant attention as faster and more economical ex vivo alternatives to animal models for the pre-clinical evaluation of therapeutics. We reported previously that raft cultures of ex vivo epithelial warts, normal human epithelia from various anatomic sites, as well as cancer cell lines (cervical and melanoma) grown at the liquid:air interface recapitulate parental tissue phenotypes. Here we describe adaptation of the above technique to develop Organoid Raft Culture (ORC) of tumors of various origin and validation as preclinical models for drug evaluation. Methods: A stromal equivalent (SE) consisting of buffered rat-tail collagen and J2 mouse fibroblasts was prepared in 24-well tissue culture plates. Freshly harvested tumors from patients or patient-derived xenografts of cervical cancers were minced to Citation Format: Nilam Sanjib Banerjee, Dianne W. Moore, Abhisek Gangrade, Donald J. Buchsbaum, Luise Burt Nabors, Thomas R. Broker, Louise T. Chow. Development of organoid raft cultures of cervical, breast and glioblastoma tumors as quick economical ex vivo human cancer models for pre-clinical drug evaluation [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr LB250.\",\"PeriodicalId\":23364,\"journal\":{\"name\":\"Tumor Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tumor Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1158/1538-7445.AM2021-LB250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tumor Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/1538-7445.AM2021-LB250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

背景:在过去几年中,患者来源的肿瘤或患者来源的异种移植物的3D类器官培养物作为用于治疗药物临床前评估的动物模型的更快、更经济的离体替代品,受到了极大的关注。我们之前报道了离体上皮疣、来自不同解剖部位的正常人类上皮细胞以及在液体-空气界面生长的癌症细胞系(宫颈和黑色素瘤)的筏形培养物,这些细胞系重现了亲代组织表型。在这里,我们描述了上述技术的适应性,以开发各种来源的肿瘤的类器官Raft培养物(ORC),并将其作为药物评估的临床前模型进行验证。方法:在24孔组织培养板上制备由缓冲大鼠尾胶原和J2小鼠成纤维细胞组成的基质等效物(SE)。从患者或患者来源的宫颈癌异种移植物中新鲜收获的肿瘤被切碎为引文格式:Nilam Sanjib Banerjee、Dianne W.Moore、Abhisek Gangrade、Donald J.Buchsbaum、Luise Burt Nabors、Thomas R.Broker、Louise T.Chow。开发子宫颈、乳腺和胶质母细胞瘤的类器官筏培养物,作为临床前药物评估的快速经济的离体人类癌症模型[摘要]。在:美国癌症研究协会2021年会论文集;2021年4月10-15日和5月17-21日。费城(PA):AACR;癌症研究2021;81(13_Suppl):摘要编号:LB250。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Abstract LB250: Development of organoid raft cultures of cervical, breast and glioblastoma tumors as quick economical ex vivo human cancer models for pre-clinical drug evaluation
Background: In the past few years, 3D organoid cultures of patient-derived tumors or patient-derived xenografts have gained significant attention as faster and more economical ex vivo alternatives to animal models for the pre-clinical evaluation of therapeutics. We reported previously that raft cultures of ex vivo epithelial warts, normal human epithelia from various anatomic sites, as well as cancer cell lines (cervical and melanoma) grown at the liquid:air interface recapitulate parental tissue phenotypes. Here we describe adaptation of the above technique to develop Organoid Raft Culture (ORC) of tumors of various origin and validation as preclinical models for drug evaluation. Methods: A stromal equivalent (SE) consisting of buffered rat-tail collagen and J2 mouse fibroblasts was prepared in 24-well tissue culture plates. Freshly harvested tumors from patients or patient-derived xenografts of cervical cancers were minced to Citation Format: Nilam Sanjib Banerjee, Dianne W. Moore, Abhisek Gangrade, Donald J. Buchsbaum, Luise Burt Nabors, Thomas R. Broker, Louise T. Chow. Development of organoid raft cultures of cervical, breast and glioblastoma tumors as quick economical ex vivo human cancer models for pre-clinical drug evaluation [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr LB250.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tumor Biology
Tumor Biology 医学-肿瘤学
CiteScore
5.40
自引率
0.00%
发文量
18
审稿时长
1 months
期刊介绍: Tumor Biology is a peer reviewed, international journal providing an open access forum for experimental and clinical cancer research. Tumor Biology covers all aspects of tumor markers, molecular biomarkers, tumor targeting, and mechanisms of tumor development and progression. Specific topics of interest include, but are not limited to: Pathway analyses, Non-coding RNAs, Circulating tumor cells, Liquid biopsies, Exosomes, Epigenetics, Cancer stem cells, Tumor immunology and immunotherapy, Tumor microenvironment, Targeted therapies, Therapy resistance Cancer genetics, Cancer risk screening. Studies in other areas of basic, clinical and translational cancer research are also considered in order to promote connections and discoveries across different disciplines. The journal publishes original articles, reviews, commentaries and guidelines on tumor marker use. All submissions are subject to rigorous peer review and are selected on the basis of whether the research is sound and deserves publication. Tumor Biology is the Official Journal of the International Society of Oncology and BioMarkers (ISOBM).
期刊最新文献
Blood platelet RNA profiles do not enable for nivolumab response prediction at baseline in patients with non-small cell lung cancer. Pre-analytical stability of the CEA, CYFRA 21.1, NSE, CA125 and HE4 tumor markers. Clinical perspectives on serum tumor marker use in predicting prognosis and treatment response in advanced non-small cell lung cancer. Screening approaches for lung cancer by blood-based biomarkers: Challenges and opportunities. Serum tumor markers for response prediction and monitoring of advanced lung cancer: A review focusing on immunotherapy and targeted therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1