{"title":"苯基葡萄糖酮的连续流合成及其转化为2h -1,2,3-三唑基的研究","authors":"Maria Molnar, Marcus Baumann","doi":"10.1007/s41981-022-00255-9","DOIUrl":null,"url":null,"abstract":"<div><p>A continuous flow approach for the generation of phenyl glucosazone from glucose and phenyl hydrazine is reported giving the pure target in 53% isolated yield. This thermal process generates the target product as an insoluble material that causes reactor fouling via adhering to the reactor walls. To overcome this issue a segmented flow approach was realised whereby streams of air and the reaction solution were combined in a T-piece and directed through the heated reactor coil. The resulting micro-mixing prevented reactor fouling and blocking and allowed for multi-hour reactions to generate the desired target in high yield. The value of the phenyl glucosazone product was demonstrated via its oxidative cyclisation into 2<i>H</i>-phenyl-1,2,3-triazoles which represent important heterocyclic scaffolds.\n</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"13 2","pages":"211 - 215"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41981-022-00255-9.pdf","citationCount":"1","resultStr":"{\"title\":\"Continuous flow synthesis of phenyl glucosazone and its conversion to 2H-1,2,3-Triazole building blocks\",\"authors\":\"Maria Molnar, Marcus Baumann\",\"doi\":\"10.1007/s41981-022-00255-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A continuous flow approach for the generation of phenyl glucosazone from glucose and phenyl hydrazine is reported giving the pure target in 53% isolated yield. This thermal process generates the target product as an insoluble material that causes reactor fouling via adhering to the reactor walls. To overcome this issue a segmented flow approach was realised whereby streams of air and the reaction solution were combined in a T-piece and directed through the heated reactor coil. The resulting micro-mixing prevented reactor fouling and blocking and allowed for multi-hour reactions to generate the desired target in high yield. The value of the phenyl glucosazone product was demonstrated via its oxidative cyclisation into 2<i>H</i>-phenyl-1,2,3-triazoles which represent important heterocyclic scaffolds.\\n</p></div>\",\"PeriodicalId\":630,\"journal\":{\"name\":\"Journal of Flow Chemistry\",\"volume\":\"13 2\",\"pages\":\"211 - 215\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s41981-022-00255-9.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flow Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41981-022-00255-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-022-00255-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Continuous flow synthesis of phenyl glucosazone and its conversion to 2H-1,2,3-Triazole building blocks
A continuous flow approach for the generation of phenyl glucosazone from glucose and phenyl hydrazine is reported giving the pure target in 53% isolated yield. This thermal process generates the target product as an insoluble material that causes reactor fouling via adhering to the reactor walls. To overcome this issue a segmented flow approach was realised whereby streams of air and the reaction solution were combined in a T-piece and directed through the heated reactor coil. The resulting micro-mixing prevented reactor fouling and blocking and allowed for multi-hour reactions to generate the desired target in high yield. The value of the phenyl glucosazone product was demonstrated via its oxidative cyclisation into 2H-phenyl-1,2,3-triazoles which represent important heterocyclic scaffolds.
期刊介绍:
The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.