{"title":"基于谜题的自动移动机器人存储系统的最优检索","authors":"T. Raviv, Y. Bukchin, R. D. de Koster","doi":"10.1287/trsc.2022.1169","DOIUrl":null,"url":null,"abstract":"Puzzle-based storage (PBS) systems store unit loads at very high density, without consuming space for transport aisles. In such systems, each load is stored on a moving device (conveyor module or transport vehicle), making these systems very expensive to build and maintain. This paper studies a new type of PBS system where loads are moved by a small number of autonomous mobile robots (AMRs). The AMRs (or vehicles) can travel freely underneath loads and lift a specific load and carry it to a neighboring vacant space. These systems are hard to analyze, as all the AMRs can move simultaneously with or without loads. We formulate an integer linear programming model that minimizes the retrieval time and the number of load and vehicle movements. The proposed model can handle single-load movements as well as block movements, multiple input/output points, and various constraints on simultaneous vehicle movements. The integer linear programming formulation can solve relatively small problems (a grid with up to about 50 cells) and a sufficient number of empty cells. For larger systems or those with few empty cells, a three-phase heuristic (3PH) is developed, which significantly outperforms the heuristic methods known to date and solves large instances sufficiently fast. The 3PH and an additional hybrid heuristic yield relatively small gaps from a lower bound provided by the integer linear programming model. We find that increasing the number of vehicles has a diminishing return effect on the retrieval times. Using a relatively small number of vehicles makes retrieval times only slightly longer than those obtained when having a vehicle under each load (which is equivalent to the traditional PBS systems). With single-load movement, more vehicles are needed compared with block movement to reach short retrieval times. Also, the marginal contribution of extra empty slots appears to decrease rapidly, which implies high storage densities can be obtained in practice.","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Retrieval in Puzzle-Based Storage Systems Using Automated Mobile Robots\",\"authors\":\"T. Raviv, Y. Bukchin, R. D. de Koster\",\"doi\":\"10.1287/trsc.2022.1169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Puzzle-based storage (PBS) systems store unit loads at very high density, without consuming space for transport aisles. In such systems, each load is stored on a moving device (conveyor module or transport vehicle), making these systems very expensive to build and maintain. This paper studies a new type of PBS system where loads are moved by a small number of autonomous mobile robots (AMRs). The AMRs (or vehicles) can travel freely underneath loads and lift a specific load and carry it to a neighboring vacant space. These systems are hard to analyze, as all the AMRs can move simultaneously with or without loads. We formulate an integer linear programming model that minimizes the retrieval time and the number of load and vehicle movements. The proposed model can handle single-load movements as well as block movements, multiple input/output points, and various constraints on simultaneous vehicle movements. The integer linear programming formulation can solve relatively small problems (a grid with up to about 50 cells) and a sufficient number of empty cells. For larger systems or those with few empty cells, a three-phase heuristic (3PH) is developed, which significantly outperforms the heuristic methods known to date and solves large instances sufficiently fast. The 3PH and an additional hybrid heuristic yield relatively small gaps from a lower bound provided by the integer linear programming model. We find that increasing the number of vehicles has a diminishing return effect on the retrieval times. Using a relatively small number of vehicles makes retrieval times only slightly longer than those obtained when having a vehicle under each load (which is equivalent to the traditional PBS systems). With single-load movement, more vehicles are needed compared with block movement to reach short retrieval times. Also, the marginal contribution of extra empty slots appears to decrease rapidly, which implies high storage densities can be obtained in practice.\",\"PeriodicalId\":51202,\"journal\":{\"name\":\"Transportation Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2022.1169\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2022.1169","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Optimal Retrieval in Puzzle-Based Storage Systems Using Automated Mobile Robots
Puzzle-based storage (PBS) systems store unit loads at very high density, without consuming space for transport aisles. In such systems, each load is stored on a moving device (conveyor module or transport vehicle), making these systems very expensive to build and maintain. This paper studies a new type of PBS system where loads are moved by a small number of autonomous mobile robots (AMRs). The AMRs (or vehicles) can travel freely underneath loads and lift a specific load and carry it to a neighboring vacant space. These systems are hard to analyze, as all the AMRs can move simultaneously with or without loads. We formulate an integer linear programming model that minimizes the retrieval time and the number of load and vehicle movements. The proposed model can handle single-load movements as well as block movements, multiple input/output points, and various constraints on simultaneous vehicle movements. The integer linear programming formulation can solve relatively small problems (a grid with up to about 50 cells) and a sufficient number of empty cells. For larger systems or those with few empty cells, a three-phase heuristic (3PH) is developed, which significantly outperforms the heuristic methods known to date and solves large instances sufficiently fast. The 3PH and an additional hybrid heuristic yield relatively small gaps from a lower bound provided by the integer linear programming model. We find that increasing the number of vehicles has a diminishing return effect on the retrieval times. Using a relatively small number of vehicles makes retrieval times only slightly longer than those obtained when having a vehicle under each load (which is equivalent to the traditional PBS systems). With single-load movement, more vehicles are needed compared with block movement to reach short retrieval times. Also, the marginal contribution of extra empty slots appears to decrease rapidly, which implies high storage densities can be obtained in practice.
期刊介绍:
Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services.
Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.