纳尔逊-塔斯曼地区主要地质构造的剪切波速

L. Wotherspoon, Rebecca Ryder, A. Stolte
{"title":"纳尔逊-塔斯曼地区主要地质构造的剪切波速","authors":"L. Wotherspoon, Rebecca Ryder, A. Stolte","doi":"10.5459/bnzsee.55.1.43-57","DOIUrl":null,"url":null,"abstract":"This paper presents the development of representative shear wave velocity profiles for the prominent geologic formations in the Nelson-Tasman region of New Zealand. Shear wave velocity (VS) profiles to depths of up to 100 m were developed at over 50 sites using a combination of active source and passive source surface wave testing. Using this data and regional geologic information, VS-depth functions were developed for six of the prominent geologic formations. Comparison with existing VS-depth functions from New Zealand and international studies highlighted the significantly higher shear wave velocities of the deposits in this region. VS exceeded 750 m/s for the Moutere Gravels and Port Hills Gravels at relatively shallow depths, representative of rock deposits. However, while the Port Hills Gravels transition to a conglomerate rock below depths of 30 m or less, the Moutere Gravel formation is an uncemented clay-bound gravel. The young gravel and sand deposits have VS higher than those from other regions. As the region is thought to have undergone cycles of geologic uplift, the resulting over-consolidation of these deposits could explain the high VS. Horizontal-to-vertical spectral ratio testing was not able to characterise the fundamental site period across the region, likely due to the weak impedance contrast that would exist at the gravel-rock interface at depth. These outcomes highlight the importance of regional geotechnical and geophysical characterisation to constrain the salient features that control potential seismic site amplification and site classification.","PeriodicalId":46396,"journal":{"name":"Bulletin of the New Zealand Society for Earthquake Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Shear wave velocities of prominent geologic formations in the Nelson-Tasman region\",\"authors\":\"L. Wotherspoon, Rebecca Ryder, A. Stolte\",\"doi\":\"10.5459/bnzsee.55.1.43-57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the development of representative shear wave velocity profiles for the prominent geologic formations in the Nelson-Tasman region of New Zealand. Shear wave velocity (VS) profiles to depths of up to 100 m were developed at over 50 sites using a combination of active source and passive source surface wave testing. Using this data and regional geologic information, VS-depth functions were developed for six of the prominent geologic formations. Comparison with existing VS-depth functions from New Zealand and international studies highlighted the significantly higher shear wave velocities of the deposits in this region. VS exceeded 750 m/s for the Moutere Gravels and Port Hills Gravels at relatively shallow depths, representative of rock deposits. However, while the Port Hills Gravels transition to a conglomerate rock below depths of 30 m or less, the Moutere Gravel formation is an uncemented clay-bound gravel. The young gravel and sand deposits have VS higher than those from other regions. As the region is thought to have undergone cycles of geologic uplift, the resulting over-consolidation of these deposits could explain the high VS. Horizontal-to-vertical spectral ratio testing was not able to characterise the fundamental site period across the region, likely due to the weak impedance contrast that would exist at the gravel-rock interface at depth. These outcomes highlight the importance of regional geotechnical and geophysical characterisation to constrain the salient features that control potential seismic site amplification and site classification.\",\"PeriodicalId\":46396,\"journal\":{\"name\":\"Bulletin of the New Zealand Society for Earthquake Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the New Zealand Society for Earthquake Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5459/bnzsee.55.1.43-57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the New Zealand Society for Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5459/bnzsee.55.1.43-57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了新西兰纳尔逊-塔斯曼地区主要地质构造的代表性剪切波速剖面的发展情况。采用主动源和被动源表面波测试相结合的方法,在50多个地点开发了深度高达100米的剪切波速(VS)剖面。利用这些数据和区域地质信息,为六个突出的地质构造开发了VS深度函数。与新西兰现有的VS深度函数和国际研究的比较突出了该地区矿床的剪切波速度明显更高。Moutere砾石和Port Hills砾石的VS超过750 m/s,深度相对较浅,代表岩石矿床。然而,当Port Hills砾石过渡到深度小于等于30m的砾岩时,Moutere砾石地层是未胶结的粘土结合砾石。年轻的砾石和砂矿床的VS高于其他地区的矿床。由于该地区被认为经历了地质抬升的周期,因此这些矿床的过度固结可以解释高VS。水平与垂直频谱比测试无法表征整个地区的基本场地周期,这可能是由于深度处砾石-岩石界面存在弱阻抗对比。这些结果突出了区域岩土工程和地球物理特征的重要性,以限制控制潜在地震场地放大和场地分类的显著特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shear wave velocities of prominent geologic formations in the Nelson-Tasman region
This paper presents the development of representative shear wave velocity profiles for the prominent geologic formations in the Nelson-Tasman region of New Zealand. Shear wave velocity (VS) profiles to depths of up to 100 m were developed at over 50 sites using a combination of active source and passive source surface wave testing. Using this data and regional geologic information, VS-depth functions were developed for six of the prominent geologic formations. Comparison with existing VS-depth functions from New Zealand and international studies highlighted the significantly higher shear wave velocities of the deposits in this region. VS exceeded 750 m/s for the Moutere Gravels and Port Hills Gravels at relatively shallow depths, representative of rock deposits. However, while the Port Hills Gravels transition to a conglomerate rock below depths of 30 m or less, the Moutere Gravel formation is an uncemented clay-bound gravel. The young gravel and sand deposits have VS higher than those from other regions. As the region is thought to have undergone cycles of geologic uplift, the resulting over-consolidation of these deposits could explain the high VS. Horizontal-to-vertical spectral ratio testing was not able to characterise the fundamental site period across the region, likely due to the weak impedance contrast that would exist at the gravel-rock interface at depth. These outcomes highlight the importance of regional geotechnical and geophysical characterisation to constrain the salient features that control potential seismic site amplification and site classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
17.60%
发文量
14
期刊最新文献
Earthquake design loads for retaining walls Infrastructure planning emergency levels of service for the Wellington region, Aotearoa New Zealand – An operationalised framework Seismic fragility of reinforced concrete buildings with hollow-core flooring systems Evaluation of the Inter-frequency Correlation of New Zealand CyberShake Crustal Earthquake Simulations Seismic protection of artefacts with adhesives and base-isolation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1