{"title":"基于解耦模型的室内温湿度模糊控制","authors":"S. Yordanova","doi":"10.25728/ASSA.2021.21.1.963","DOIUrl":null,"url":null,"abstract":"The control of room temperature and humidity is important for ensuring of the necessary indoor human comfort for optimal work capacity and effective rest. The plant nonlinearity and the variables coupling require intelligent control techniques in order to satisfy the high performance demands. The present paper suggests a procedure for the design of a simple for industrial implementation fuzzy logic controller on the principle of parallel distributed compensation (PDC) that consists of linear local decoupling two-variable controllers. It is based on a Takagi-Sugeno-Kang (TSK) plant model, derived from experimentally obtained plant step responses using expert knowledge and parameter optimisation via genetic algorithms. The design is applied for the control of the temperature and the relative humidity of a laboratory air-conditioning system. The PDC system outperforms an existing Mamdani two-variable control system with adaptive properties in shorter settling time, higher robustness and reduced overshoot, estimated from simulations.","PeriodicalId":39095,"journal":{"name":"Advances in Systems Science and Applications","volume":"21 1","pages":"46-59"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoupling Model-Based Fuzzy Logic Control of Room Temperature and Humidity\",\"authors\":\"S. Yordanova\",\"doi\":\"10.25728/ASSA.2021.21.1.963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The control of room temperature and humidity is important for ensuring of the necessary indoor human comfort for optimal work capacity and effective rest. The plant nonlinearity and the variables coupling require intelligent control techniques in order to satisfy the high performance demands. The present paper suggests a procedure for the design of a simple for industrial implementation fuzzy logic controller on the principle of parallel distributed compensation (PDC) that consists of linear local decoupling two-variable controllers. It is based on a Takagi-Sugeno-Kang (TSK) plant model, derived from experimentally obtained plant step responses using expert knowledge and parameter optimisation via genetic algorithms. The design is applied for the control of the temperature and the relative humidity of a laboratory air-conditioning system. The PDC system outperforms an existing Mamdani two-variable control system with adaptive properties in shorter settling time, higher robustness and reduced overshoot, estimated from simulations.\",\"PeriodicalId\":39095,\"journal\":{\"name\":\"Advances in Systems Science and Applications\",\"volume\":\"21 1\",\"pages\":\"46-59\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Systems Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25728/ASSA.2021.21.1.963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Systems Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25728/ASSA.2021.21.1.963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Decoupling Model-Based Fuzzy Logic Control of Room Temperature and Humidity
The control of room temperature and humidity is important for ensuring of the necessary indoor human comfort for optimal work capacity and effective rest. The plant nonlinearity and the variables coupling require intelligent control techniques in order to satisfy the high performance demands. The present paper suggests a procedure for the design of a simple for industrial implementation fuzzy logic controller on the principle of parallel distributed compensation (PDC) that consists of linear local decoupling two-variable controllers. It is based on a Takagi-Sugeno-Kang (TSK) plant model, derived from experimentally obtained plant step responses using expert knowledge and parameter optimisation via genetic algorithms. The design is applied for the control of the temperature and the relative humidity of a laboratory air-conditioning system. The PDC system outperforms an existing Mamdani two-variable control system with adaptive properties in shorter settling time, higher robustness and reduced overshoot, estimated from simulations.
期刊介绍:
Advances in Systems Science and Applications (ASSA) is an international peer-reviewed open-source online academic journal. Its scope covers all major aspects of systems (and processes) analysis, modeling, simulation, and control, ranging from theoretical and methodological developments to a large variety of application areas. Survey articles and innovative results are also welcome. ASSA is aimed at the audience of scientists, engineers and researchers working in the framework of these problems. ASSA should be a platform on which researchers will be able to communicate and discuss both their specialized issues and interdisciplinary problems of systems analysis and its applications in science and industry, including data science, artificial intelligence, material science, manufacturing, transportation, power and energy, ecology, corporate management, public governance, finance, and many others.